We develop a version of Hodge theory for a large class of smooth cohomologically proper quotient stacks $X/G$ analogous to Hodge theory for smooth projective schemes. We show that the noncommutative Hodge-de Rham sequence for the category of equivariant coherent sheaves degenerates. This spectral sequence converges to the periodic cyclic homology, which we canonically identify with the topological equivariant $K$-theory of $X$ with respect to a maximal compact subgroup $M subset G$. The result is a natural pure Hodge structure of weight $n$ on $K^n_M(X^{an})$. We also treat categories of matrix factorizations for equivariant Landau-Ginzburg models.
We give a new construction of the equivariant $K$-theory of group actions (cf. Barwick et al.), producing an infinite loop $G$-space for each Waldhausen category with $G$-action, for a finite group $G$. On the category $R(X)$ of retractive spaces over a $G$-space $X$, this produces an equivariant lift of Waldhausens functor $A(X)$, and we show that the $H$-fixed points are the bivariant $A$-theory of the fibration $X_{hH}to BH$. We then use the framework of spectral Mackey functors to produce a second equivariant refinement $A_G(X)$ whose fixed points have tom Dieck type splittings. We expect this second definition to be suitable for an equivariant generalization of the parametrized $h$-cobordism theorem.
The Darboux-Weinstein decomposition is a central result in the theory of Poisson (degenerate symplectic) varieties, which gives a local decomposition at a point as a product of the formal neighborhood of the symplectic leaf through the point and a formal slice. Recently, conical symplectic resolutions, and more generally, Poisson cones, have been very actively studied in representation theory and algebraic geometry. This motivates asking for a C*-equivariant version of the Darboux-Weinstein decomposition. In this paper, we develop such a theory, prove basic results on their existence and uniqueness, study examples (quotient singularities and hypertoric varieties), and applications to noncommutative algebra (their quantization). We also pose some natural questions on existence and quantization of C*-actions on slices to conical symplectic leaves.
Twisted topological Hochschild homology of $C_n$-equivariant spectra was introduced by Angeltveit, Blumberg, Gerhardt, Hill, Lawson, and Mandell, building on the work of Hill, Hopkins, and Ravenel on norms in equivariant homotopy theory. In this paper we introduce tools for computing twisted THH, which we apply to computations for Thom spectra, Eilenberg-MacLane spectra, and the real bordism spectrum $MU_{mathbb{R}}$. In particular, we construct an equivariant version of the Bokstedt spectral sequence, the formulation of which requires further development of the Hochschild homology of Green functors, first introduced by Blumberg, Gerhardt, Hill, and Lawson.
We construct a $C_2$-equivariant spectral sequence for RO$(C_2)$-graded homotopy groups. The construction is by using the motivic effective slice filtration and the $C_2$-equivariant Betti realization. We apply the spectral sequence to compute the RO$(C_2)$-graded homotopy groups of the completed $C_2$-equivariant connective real $K$-theory spectrum. The computation reproves the $C_2$-equivariant Adams spectral sequence results by Guillou, Hill, Isaksen and Ravenel.