Do you want to publish a course? Click here

The rest-frame optical sizes of massive galaxies with suppressed star formation at $zsim4$

119   0   0.0 ( 0 )
 Added by Mariko Kubo
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the rest-frame optical sizes of massive quiescent galaxies (QGs) at $zsim4$ measured at $K$-band with the Infrared Camera and Spectrograph (IRCS) and AO188 on the Subaru telescope. Based on a deep multi-wavelength catalog in the Subaru XMM-Newton Deep Survey Field (SXDS), covering a wide wavelength range from the $u$-band to the IRAC $8.0mu m$ over 0.7 deg$^2$, we evaluate photometric redshift to identify massive ($M_{star}sim10^{11} M_odot$) galaxies with suppressed star formation. These galaxies show a prominent 4000$rm AA$ break feature at $zsim4$, suggestive of an evolved stellar population. We then conduct follow-up $K$-band imaging with adaptive optics for the five brightest galaxies ($K_{AB,total}=22.5sim23.4$). Compared to lower redshift ones, QGs at $zsim4$ have smaller physical sizes of effective radii $r_{eff}=0.2$ to $1.8$ kpc. The mean size measured by stacking the four brightest objects is $r_{eff}=0.7rm kpc$. This is the first measurement of the rest-frame optical sizes of QGs at $zsim4$. We evaluate the robustness of our size measurements using simulations and find that our size estimates are reasonably accurate with an expected systematic bias of $sim0.2$ kpc. If we account for the stellar mass evolution, massive QGs at $zsim4$ are likely to evolve into the most massive galaxies today. We find their size evolution with cosmic time in a form of $log(r_e/{rm kpc})= -0.44+1.77 log(t/rm Gyr)$. Their size growth is proportional to the square of stellar mass, indicating the size-stellar mass growth driven by minor dry mergers.



rate research

Read More

Despite the existence of well-defined relationships between cold gas and star formation, there is evidence that some galaxies contain large amounts of HI that do not form stars efficiently. By systematically assessing the link between HI and star formation within a sample of galaxies with extremely high HI masses (log M_HI/M_sun > 10), we uncover a population of galaxies with an unexpected combination of high HI masses and low specific star formation rates that exists primarily at stellar masses greater than log M_*/M_sun ~ 10.5. We obtained HI maps of 20 galaxies in this population to understand the distribution of the HI and the physical conditions in the galaxies that could be suppressing star formation in the presence of large quantities of HI. We find that all of the galaxies we observed have low HI surface densities in the range in which inefficient star formation is common. The low HI surface densities are likely the main cause of the low sSFRs, but there is also some evidence that AGN or bulges contribute to the suppression of star formation. The samples agreement with the global star formation law highlights its usefulness as a tool for understanding galaxies that do not always follow expected relationships.
We compare the rest-frame ultraviolet and rest-frame optical morphologies of 2 < z < 3 star-forming galaxies in the GOODS-S field using Hubble Space Telescope WFC3 and ACS images from the CANDELS, GOODS, and ERS programs. We show that the distribution of sizes and concentrations for 1.90 < z < 2.35 galaxies selected via their rest-frame optical emission-lines are statistically indistinguishable from those of Lyman-alpha emitting systems found at z ~ 2.1 and z ~ 3.1. We also show that the z > 2 star-forming systems of all sizes and masses become smaller and more compact as one shifts the observing window from the UV to the optical. We argue that this offset is due to inside-out galaxy formation over the first ~ 2 Gyr of cosmic time.
We present the average rest-frame spectrum of high-redshift dusty, star-forming galaxies from 250-770GHz. This spectrum was constructed by stacking ALMA 3mm spectra of 22 such sources discovered by the South Pole Telescope and spanning z=2.0-5.7. In addition to multiple bright spectral features of 12CO, [CI], and H2O, we also detect several faint transitions of 13CO, HCN, HNC, HCO+, and CN, and use the observed line strengths to characterize the typical properties of the interstellar medium of these high-redshift starburst galaxies. We find that the 13CO brightness in these objects is comparable to that of the only other z>2 star-forming galaxy in which 13CO has been observed. We show that the emission from the high-critical density molecules HCN, HNC, HCO+, and CN is consistent with a warm, dense medium with T_kin ~ 55K and n_H2 >~ 10^5.5 cm^-3. High molecular hydrogen densities are required to reproduce the observed line ratios, and we demonstrate that alternatives to purely collisional excitation are unlikely to be significant for the bulk of these systems. We quantify the average emission from several species with no individually detected transitions, and find emission from the hydride CH and the linear molecule CCH for the first time at high redshift, indicating that these molecules may be powerful probes of interstellar chemistry in high-redshift systems. These observations represent the first constraints on many molecular species with rest-frame transitions from 0.4-1.2mm in star-forming systems at high redshift, and will be invaluable in making effective use of ALMA in full science operations.
We use the high angular resolution in the near-infrared of the WFC3 on HST to determine YHVz color-color selection criteria to identify and characterize 1.5<z<3.5 galaxies in the HUDF09 and ERS (GOODS-South) fields. The WFC3 NIR images reveal galaxies at these redshifts that were undetected in the rest-frame UV HUDF/GOODS images, as well as true centers and regular disks in galaxies classified as highly irregular in rest-frame UV light. Across the 1.5<z<2.15 redshift range, regular disks are unveiled in the WFC3 images of ~25% of both intermediate and high mass galaxies, i.e., above 10^10 Msun. Meanwhile, galaxies maintaining diffuse and/or irregular morphologies in the rest-frame optical light---i.e., not yet dynamically settled---at these epochs are almost entirely restricted to masses below 10^11 Msun. In contrast at 2.25 < z < 3.5 these diffuse and/or irregular structures overwhelmingly dominate the morphological mix in both the intermediate and high mass regimes, while no regular disks, and only a small fraction (25%) of smooth spheroids, are evident above 10^11 Msun. Strikingly, by 1.5 < z < 2.25 roughly 2 out of every 3 galaxies at the highest masses are spheroids. In our small sample, the fraction of star-forming galaxies at these mass scales decreases concurrently from ~60% to ~5%. If confirmed, this indicates that z~2 is the epoch of both the morphological transformation and quenching of star-formation which assemble the first substantial population of massive ellipticals.
We study the rest-frame ultra-violet sizes of massive (~0.8 x 10^11 M_Sun) galaxies at 3.4<z<4.2, selected from the FourStar Galaxy Evolution Survey (ZFOURGE), by fitting single Sersic profiles to HST/WFC3/F160W images from the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS). Massive quiescent galaxies are very compact, with a median circularized half-light radius r_e = 0.63 +/- 0.18 kpc. Removing 5/16 (31%) sources with signs of AGN activity does not change the result. Star-forming galaxies have r_e = 2.0 +/- 0.60 kpc, 3.2 +/- 1.3 x larger than quiescent galaxies. Quiescent galaxies at z~4 are on average 6.0 +- 0.17 x smaller than at z~0 and 1.9 +/- 0.7 x smaller than at z~2. Star-forming galaxies of the same stellar mass are 2.4 +/- 0.7 x smaller than at z~0. Overall, the size evolution at 0<z<4 is well described by a powerlaw, with r_e = 5.08 +/- 0.28 (1+z)^(-1.44+/-0.08) kpc for quiescent and r_e = 6.02 +/- 0.28 (1+z)^(-0.72+/-0.05) kpc for star-forming galaxies. Compact star-forming galaxies are rare in our sample: we find only 1/14 (7%) with r_e / (M / 10^11 M_Sun)^0.75 < 1.5, whereas 13/16 (81%) of the quiescent galaxies is compact. The number density of compact quiescent galaxies at z~4 is 1.8 +/- 0.8 x 10^-5 Mpc^-3 and increases rapidly, by >5 x, between 2<z<4. The paucity of compact star-forming galaxies at z~4 and their large rest-frame ultra-violet median sizes suggest that the formation phase of compact cores is very short and/or highly dust obscured.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا