Do you want to publish a course? Click here

Topology and Topological Sequence Entropy

68   0   0.0 ( 0 )
 Added by Ruifeng Zhang
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Let $X$ be a compact metric space and $T:Xlongrightarrow X$ be continuous. Let $h^*(T)$ be the supremum of topological sequence entropies of $T$ over all subsequences of $mathbb Z_+$ and $S(X)$ be the set of the values $h^*(T)$ for all continuous maps $T$ on $X$. It is known that ${0} subseteq S(X)subseteq {0, log 2, log 3, ldots}cup {infty}$. Only three possibilities for $S(X)$ have been observed so far, namely $S(X)={0}$, $S(X)={0,log2, infty}$ and $S(X)={0, log 2, log 3, ldots}cup {infty}$. In this paper we completely solve the problem of finding all possibilities for $S(X)$ by showing that in fact for every set ${0} subseteq A subseteq {0, log 2, log 3, ldots}cup {infty}$ there exists a one-dimensional continuum $X_A$ with $S(X_A) = A$. In the construction of $X_A$ we use Cook continua. This is apparently the first application of these very rigid continua in dynamics. We further show that the same result is true if one considers only homeomorphisms rather than con-ti-nuous maps. The problem for group actions is also addressed. For some class of group actions (by homeomorphisms) we provide an analogous result, but in full generality this problem remains open. The result works also for an analogous class of semigroup actions (by continuous maps).



rate research

Read More

Let $(X, T)$ be a topological dynamical system (TDS), and $h (T, K)$ the topological entropy of a subset $K$ of $X$. $(X, T)$ is {it lowerable} if for each $0le hle h (T, X)$ there is a non-empty compact subset with entropy $h$; is {it hereditarily lowerable} if each non-empty compact subset is lowerable; is {it hereditarily uniformly lowerable} if for each non-empty compact subset $K$ and each $0le hle h (T, K)$ there is a non-empty compact subset $K_hsubseteq K$ with $h (T, K_h)= h$ and $K_h$ has at most one limit point. It is shown that each TDS with finite entropy is lowerable, and that a TDS $(X, T)$ is hereditarily uniformly lowerable if and only if it is asymptotically $h$-expansive.
77 - Claudio Bonanno 2001
We study the Manneville map f(x)=x+x^z (mod 1), with z>1, from a computational point of view, studying the behaviour of the Algorithmic Information Content. In particular, we consider a family of piecewise linear maps that gives examples of algorithmic behaviour ranging from the fully to the mildly chaotic, and show that the Manneville map is a member of this family.
Let $(X, T)$ be a topological dynamical system. Denote by $h (T, K)$ and $h^B (T, K)$ the covering entropy and dimensional entropy of $Ksubseteq X$, respectively. $(X, T)$ is called D-{it lowerable} (resp. {it lowerable}) if for each $0le hle h (T, X)$ there is a subset (resp. closed subset) $K_h$ with $h^B (T, K_h)= h$ (resp. $h (T, K_h)= h$); is called D-{it hereditarily lowerable} (resp. {it hereditarily lowerable}) if each Souslin subset (resp. closed subset) is D-lowerable (resp. lowerable). In this paper it is proved that each topological dynamical system is not only lowerable but also D-lowerable, and each asymptotically $h$-expansive system is D-hereditarily lowerable. A minimal system which is lowerable and not hereditarily lowerable is demonstrated.
Let $mathcal{M}(X)$ be the space of Borel probability measures on a compact metric space $X$ endowed with the weak$^ast$-topology. In this paper, we prove that if the topological entropy of a nonautonomous dynamical system $(X,{f_n}_{n=1}^{+infty})$ vanishes, then so does that of its induced system $(mathcal{M}(X),{f_n}_{n=1}^{+infty})$; moreover, once the topological entropy of $(X,{f_n}_{n=1}^{+infty})$ is positive, that of its induced system $(mathcal{M}(X),{f_n}_{n=1}^{+infty})$ jumps to infinity. In contrast to Bowens inequality, we construct a nonautonomous dynamical system whose topological entropy is not preserved under a finite-to-one extension.
We study the topological entropy of hom tree-shifts and show that, although the topological entropy is not conjugacy invariant for tree-shifts in general, it remains invariant for hom tree higher block shifts. In doi:10.1016/j.tcs.2018.05.034 and doi:10.3934/dcds.2020186, Petersen and Salama demonstrated the existence of topological entropy for tree-shifts and $h(mathcal{T}_X) geq h(X)$, where $mathcal{T}_X$ is the hom tree-shift derived from $X$. We characterize a necessary and sufficient condition when the equality holds for the case where $X$ is a shift of finite type. In addition, two novel phenomena have been revealed for tree-shifts. There is a gap in the set of topological entropy of hom tree-shifts of finite type, which makes such a set not dense. Last but not least, the topological entropy of a reducible hom tree-shift of finite type is equal to or larger than that of its maximal irreducible component.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا