Do you want to publish a course? Click here

Trans-series for the ground state density and Generalized Bloch equation

140   0   0.0 ( 0 )
 Added by Alexander Turbiner
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Based on Generalized Bloch equation the trans-series expansion for the phase (exponent) of the ground state density for double-well potential is constructed. It is shown that the leading and next-to-leading semiclassical terms are still defined by the flucton trajectory (its classical action) and quadratic fluctuations (the determinant), respectively, while the the next-to-next-to-leading correction (at large distances) is of non-perturbative nature. It comes from the fact that all flucton plus multi-instanton, instanton-anti-instanton classical trajectories lead to the same classical action behavior at large distances! This correction is proportional to sum of all leading instanton contributions to energy gap.



rate research

Read More

397 - J.M. Speight 2010
It is shown that the quantum ground state energy of particle of mass m and electric charge e moving on a compact Riemann surface under the influence of a constant magnetic field of strength B is E_0=eB/2m. Remarkably, this formula is completely independent of both the geometry and topology of the Riemann surface. The formula is obtained by reinterpreting the quantum Hamiltonian as the second variation operator of an associated classical variational problem.
Quantum state wave functionals are constructed in exact form for the graviton-like field theory obtained by breaking down the topological symmetry of the string action related with the Euler characteristic of the world-surface; their continuous and discrete symmetries are discussed. The comparison with the so-called Chern-Simons state, which may be inappropriate as quantum state, allows us to conclude that the found wave functionals will give a plausible approximation to the ground state for the considered field theory.
In this work we consider the existence and uniqueness of the ground state of the regularized Hamiltonian of the Supermembrane in dimensions $D= 4,,5,,7$ and 11, or equivalently the $SU(N)$ Matrix Model. That is, the 0+1 reduction of the 10-dimensional $SU(N)$ Super Yang-Mills Hamiltonian. This ground state problem is associated with the solutions of the inner and outer Dirichlet problems for this operator, and their subsequent smooth patching (glueing) into a single state. We have discussed properties of the inner problem in a previous work, therefore we now investigate the outer Dirichlet problem for the Hamiltonian operator. We establish existence and uniqueness on unbounded valleys defined in terms of the bosonic potential. These are precisely those regions where the bosonic part of the potential is less than a given value $V_0$, which we set to be arbitrary. The problem is well posed, since these valleys are preserved by the action of the $SU(N)$ constraint. We first show that their Lebesgue measure is finite, subject to restrictions on $D$ in terms of $N$. We then use this analysis to determine a bound on the fermionic potential which yields the coercive property of the energy form. It is from this, that we derive the existence and uniqueness of the solution. As a by-product of our argumentation, we show that the Hamiltonian, restricted to the valleys, has spectrum purely discrete with finite multiplicity. Remarkably, this is in contrast to the case of the unrestricted space, where it is well known that the spectrum comprises a continuous segment. We discuss the relation of our work with the general ground state problem and the question of confinement in models with strong interactions.
A generalization of the Hohenberg-Kohn theorem proves the existence of a density functional for an intrinsic state, symmetry violating, out of which a physical state with good quantum numbers can be projected.
The various types of generalized Cattaneo, called also telegraphers equation, are studied. We find conditions under which solutions of the equations considered so far can be recognized as probability distributions, textit{i.e.} are normalizable and non-negative on their domains. Analysis of the relevant mean squared displacements enables us to classify diffusion processes described by such obtained solutions and to identify them with either ordinary or anomalous super- or subdiffusion. To complete our study we analyse derivations of just considered examples the generalized Cattaneo equations using the continuous time random walk and the persistent random walk approaches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا