Overcoming the Memory Bottleneck in Auxiliary Field Quantum Monte Carlo Simulations with Interpolative Separable Density Fitting


Abstract in English

We investigate the use of interpolative separable density fitting (ISDF) as a means to reduce the memory bottleneck in auxiliary field quantum Monte Carlo (AFQMC) simulations of real materials in Gaussian basis sets. We find that ISDF can reduce the memory scaling of AFQMC simulations from $mathcal{O}(M^4)$ to $mathcal{O}(M^2)$. We test these developments by computing the structural properties of Carbon in the diamond phase, comparing to results from existing computational methods and experiment.

Download