We study the effect of the anneal path control per qubit, a new user control feature offered on the D-Wave 2000Q quantum annealer, on the performance of quantum annealing for solving optimization problems by numerically solving the time-dependent Schrodinger equation for the time-dependent Hamiltonian modeling the annealing problems. The anneal path control is thereby modeled as a modified linear annealing scheme, resulting in an advanced and retarded scheme. The considered optimization problems are 2-SAT problems with 12 Boolean variables, a known unique ground state and a highly degenerate first excited state. We show that adjustment of the anneal path control can result in a widening of the minimal spectral gap by one or two orders of magnitude and an enhancement of the success probability of finding the solution of the optimization problem. We scrutinize various iterative methods based on the spin floppiness, the average spin value, and on the average energy and describe their performance in boosting the quantum annealing process.