Optically trapped polariton condensates as semiclassical time crystals


Abstract in English

We analyse nonequilibrium phase transitions in microcavity polariton condensates trapped in optically induced annular potentials. We develop an analytic model for annular optical traps, which gives an intuitive interpretation for recent experimental observations on the polariton spatial mode switching with variation of the trap size. In the vicinity of polariton lasing threshold we then develop a nonlinear mean-field model accounting for interactions and gain saturation, and identify several bifurcation scenarios leading to formation of high angular momentum quantum vortices. For experimentally relevant parameters we predict the emergence of spatially and temporally ordered polariton condensates (time crystals), which can be witnessed by frequency combs in the polariton lasing spectrum or by direct time-resolved optical emission measurements. In contrast to previous realizations, our polaritonic time crystal is spontaneously formed from an incoherent excitonic bath and does not inherit its frequency from any periodic driving field.

Download