Do you want to publish a course? Click here

Remote State Preparation using Correlations beyond Discord

143   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In recent years, exploring the possible use of separable states as resource for achieving quantum information processing(QIP) tasks has been gaining increasing significance. In this context, a particularly important demonstration has been that non-vanishing discord is the necessary condition for the separable states to be used as resource for remotely preparing any arbitrary pure target state [Nature Physics $8$, $666$ $(2012)$]. The present work stems from our observation that not only resource states with same discord can imply different efficiencies (in terms of average fidelity) of the remote state preparation (RSP) protocol, but also states with higher discord can imply lower RSP efficiency. This, therefore, necessitates identification of the relevant feature of quantum correlations which can appropriately quantify effectiveness of the resource state for the RSP protocol. To this end, for the two-qubit Bell-diagonal states, we show that an appropriate measure of simultaneous correlations in three mutually unbiased bases can serve to quantify usefulness of the resource for the RSP task using entangled as well as separable states, including non-discordant states as resource. In particular, it is revealed that zero-discord states having such non-vanishing measure can be useful for remotely preparing a subset of pure target states. Thus, this work shows that, using separable states, an effective resource for QIP tasks such as RSP can be provided by simultaneous correlations in mutually unbiased bases.



rate research

Read More

Quantum entanglement is widely recognized as one of the key resources for the advantages of quantum information processing, including universal quantum computation, reduction of communication complexity or secret key distribution. However, computational models have been discovered, which consume very little or no entanglement and still can efficiently solve certain problems thought to be classically intractable. The existence of these models suggests that separable or weakly entangled states could be extremely useful tools for quantum information processing as they are much easier to prepare and control even in dissipative environments. It has been proposed that a requirement for useful quantum states is the generation of so-called quantum discord, a measure of non-classical correlations that includes entanglement as a subset. Although a link between quantum discord and few quantum information tasks has been studied, its role in computation speed-up is still open and its operational interpretation remains restricted to only few somewhat contrived situations. Here we show that quantum discord is the optimal resource for the remote quantum state preparation, a variant of the quantum teleportation protocol. Using photonic quantum systems, we explicitly show that the geometric measure of quantum discord is related to the fidelity of this task, which provides an operational meaning. Moreover, we demonstrate that separable states with non-zero quantum discord can outperform entangled states. Therefore, the role of quantum discord might provide fundamental insights for resource-efficient quantum information processing.
Dissimilar notions of quantum correlations have been established, each being motivated through particular applications in quantum information science and each competing for being recognized as the most relevant measure of quantumness. In this contribution, we experimentally realize a form of quantum correlation that exists even in the absence of entanglement and discord. We certify the presence of such quantum correlations via negativities in the regularized two-mode Glauber-Sudarshan function. Our data show compatibility with an incoherent mixture of orthonormal photon-number states, ruling out quantum coherence and other kinds of quantum resources. By construction, the quantumness of our state is robust against dephasing, thus requiring fewer experimental resources to ensure stability. In addition, we theoretically show how multimode entanglement can be activated based on the generated, nonentangled state. Therefore, we implement a robust kind of nonclassical photon-photon correlated state with useful applications in quantum information processing.
78 - Arun K. Pati 2002
Quantum information theory has revolutionized the way in which information is processed using quantum resources such as entangled states, local operations and classical communications. Two important protocols in quantum communications are quantum teleportation and remote state preparation. In quantum teleportation neither the sender nor the receiver know the identity of a state. In remote state preparation the sender knows the state which is to be remotely prepared without ever physically sending the object or the complete classical description of it. Using one unit of entanglement and one classical bit Alice can remotely prepare a photon (from special ensemble) of her choice at Bobs laboratory. In remote state measurement Alice asks Bob to simulate any single particle measurement statistics on an arbitrary photon. In this talk we will present these ideas and discuss the latest developments and future open problems.
We demonstrate an experimental realization of remote state preparation via the quantum teleportation algorithm, using an entangled photon pair in the polarization degree of freedom as the quantum resource. The input state is encoded on the path of one of the photons from the pair. The improved experimental scheme allows us to control the preparation and teleportation of a state over the entire Bloch sphere with a resolution of the degree of mixture given by the coherence length of the photon pair. Both the preparation of the input state and the implementation of the quantum gates are performed in a pair of chained displaced Sagnac interferometers, which contribute to the overall robustness of the setup. An average fidelity above 0.9 is obtained for the remote state preparation process. This scheme allows for a prepared state to be transmitted on every repetition of the experiment, thus giving an intrinsic success probability of 1.
We consider a scenario of remote state preparation of qubits where a single copy of an entangled state is shared between Alice and several Bobs who sequentially perform unsharp single-particle measurements. We show that a substantial number of Bobs can optimally and reliably prepare the qubit in Alices lab exceeding the classical realm. There can be at most 16 Bobs in a sequence when the state is chosen from the equatorial circle of the Bloch sphere. In general, depending upon the choice of a circle from the Bloch sphere, the optimum number of Bobs ranges from 12 for the worst choice, to become remarkably very large corresponding to circles in the polar regions, in case of an initially shared maximally entangled state. We further show that the bound on the number of observers successful in implementing remote state preparation is higher for maximally entangled initial states than that for non-maximally entangled initial states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا