Building a Lemmatizer and a Spell-checker for Sorani Kurdish


Abstract in English

The present paper aims at presenting a lemmatization and a word-level error correction system for Sorani Kurdish. We propose a hybrid approach based on the morphological rules and a n-gram language model. We have called our lemmatization and error correction systems Peyv and R^en^us respectively, which are the first tools presented for Sorani Kurdish to the best of our knowledge. The Peyv lemmatizer has shown 86.7% accuracy. As for R^en^us, using a lexicon, we have obtained 96.4% accuracy while without a lexicon, the correction system has 87% accuracy. As two fundamental text processing tools, these tools can pave the way for further researches on more natural language processing applications for Sorani Kurdish.

Download