Do you want to publish a course? Click here

Analytical study of static beyond-Frohlich Bose polarons in one dimension

57   0   0.0 ( 0 )
 Added by Ben Kain
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Grusdt et al. [New J. Phys. 19, 103035 (2017)] recently made a renormalization group study of a one-dimensional Bose polaron in cold atoms. Their study went beyond the usual Frohlich description, which includes only single-phonon processes, by including two-phonon processes in which two phonons are simultaneously absorbed or emitted during impurity scattering [Shchadilova et al. Phys. Rev. Lett. 117, 113002 (2016)]. We study this same beyond-Frohlich model, but in the static impurity limit where the ground state is described by a multimode squeezed state instead of the multimode coherent state in the static Frohlich model. We solve the system exactly by applying the generalized Bogoliubov transformation, an approach that can be straightforwardly adapted to higher dimensions. Using our exact solution, we obtain a polaron energy free of infrared divergences and construct analytically the polaron phase diagram. We find that the repulsive polaron is stable on the positive side of the impurity-boson interaction but is always thermodynamically unstable on the negative side of the impurity-boson interaction, featuring a bound state, whose binding energy we obtain analytically. We find that the attractive polaron is always dynamically unstable, featuring a pair of imaginary energies which we obtain analytically. We expect the multimode squeezed state to help with studies that go not only beyond the Frohlich paradigm but also beyond Bogoliubov theory, just as the multimode coherent state has helped with the study of Frohlich polarons.



rate research

Read More

An impurity immersed in a Bose-Einstein condensate is no longer accurately described by the Frohlich Hamiltonian as the coupling between the impurity and the boson bath gets stronger. We study the dominant effects of the two-phonon terms beyond the Frohlich model on the ground-state properties of the polaron using Feynmans variational path-integral approach. The previously reported discrepancy in the effective mass between the renormalization group approach and this theory is shown to be absent in the beyond-Frohlich model on the positive side of the Feshbach resonance. Self-trapping, characterized by a sharp and dramatic increase of the effective mass, is no longer observed for the repulsive polaron once the two-phonon interactions are included. For the attractive polaron we find a divergence of the ground-state energy and effective mass at weaker couplings than previously observed within the Frohlich model.
The degenerate Bose-Fermi (BF) mixtures in one dimension present a novel realization of two decoupled Luttinger liquids with bosonic and fermionic degrees of freedom at low temperatures. However, the transport properties of such decoupled Luttinger liquids of charges have not yet been studied. Here we apply generalized hydrodynamics to study the transport properties of one-dimensional (1D) BF mixtures with delta-function interactions. The initial state is set up as the semi-infinite halves of two 1D BF mixtures with different temperatures, joined together at the time $t=0$ and the junction point $x=0$. Using the Bethe ansatz solution, we first rigorously prove the existence of conserved charges for both the bosonic and fermionic degrees of freedom, preserving the Euler-type continuity equations. We then analytically obtain the distributions of the densities and currents of the local conserved quantities which solely depend on the ratio $xi=x/t$. The left and right moving quasiparticle excitations of the two halves form multiple segmented light-cone hydrodynamics that display ballistic transport of the conserved charge densities and currents in different degrees of freedom. Our analytical results provide a deep understanding of the quantum transport of multi-component Luttinger liquids in quantum systems with both bosonic and fermionic statistics.
The mobile impurity in a Bose-Einstein condensate (BEC) is a paradigmatic many-body problem. For weak interaction between the impurity and the BEC, the impurity deforms the BEC only slightly and it is well described within the Frohlich model and the Bogoliubov approximation. For strong local attraction this standard approach, however, fails to balance the local attraction with the weak repulsion between the BEC particles and predicts an instability where an infinite number of bosons is attracted toward the impurity. Here we present a solution of the Bose polaron problem beyond the Bogoliubov approximation which includes the local repulsion between bosons and thereby stabilizes the Bose polaron even near and beyond the scattering resonance. We show that the Bose polaron energy remains bounded from below across the resonance and the size of the polaron dressing cloud stays finite. Our results demonstrate how the dressing cloud replaces the attractive impurity potential with an effective many-body potential that excludes binding. We find that at resonance, including the effects of boson repulsion, the polaron energy depends universally on the effective range. Moreover, while the impurity contact is strongly peaked at positive scattering length, it remains always finite. Our solution highlights how Bose polarons are self-stabilized by repulsion, providing a mechanism to understand quench dynamics and nonequilibrium time evolution at strong coupling.
107 - Yajiang Hao 2016
We investigate the ground state properties of anti-ferromagnetic spin-1 Bose gases in one dimensional harmonic potential from the weak repulsion regime to the strong repulsion regime. By diagonalizing the Hamiltonian in the Hilbert space composed of the lowest eigenstates of single particle and spin components, the ground state wavefunction and therefore the density distributions, magnetization distribution, one body density matrix, and momentum distribution for each components are obtained. It is shown that the spinor Bose gases of different magnetization exhibit the same total density profiles in the full interaction regime, which evolve from the single peak structure embodying the properties of Bose gases to the fermionized shell structure of spin-polarized fermions. But each components display different density profiles, and magnetic domains emerge in the strong interaction limit for $M=0.25$. In the strong interaction limit, one body density matrix and the momentum distributions exhibit the same behaviours as those of spin-polarized fermions. The fermionization of momentum distribution takes place, in contrast to the $delta$-function-like distribution of single component Bose gases in the full interaction region.
We theoretically study dilute superfluidity of spin-1 bosons with antiferromagnetic interactions and synthetic spin-orbit coupling (SOC) in a one-dimensional lattice. Employing a combination of density matrix renormalization group and quantum field theoretical techniques we demonstrate the appearance of a robust superfluid spin-liquid phase in which the spin-sector of this spinor Bose-Einstein condensate remains quantum disordered even after introducing quadratic Zeeman and helical magnetic fields. Despite remaining disordered, the presence of these symmetry breaking fields lifts the perfect spin-charge separation and thus the nematic correlators obey power-law behavior. We demonstrate that, at strong coupling, the SOC induces a charge density wave state that is not accessible in the presence of linear and quadratic Zeeman fields alone. In addition, the SOC induces oscillations in the spin and nematic expectation values as well as the bosonic Greens function. These non-trivial effects of a SOC are suppressed under the application of a large quadratic Zeeman field. We discuss how our results could be observed in experiments on ultracold gases of $^{23}$Na in an optical lattice.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا