Do you want to publish a course? Click here

Effective dynamics for non-reversible stochastic differential equations: a quantitative study

167   0   0.0 ( 0 )
 Added by Frederic Legoll
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Coarse-graining is central to reducing dimensionality in molecular dynamics, and is typically characterized by a mapping which projects the full state of the system to a smaller class of variables. While extensive literature has been devoted to coarse-graining starting from reversible systems, not much is known in the non-reversible setting. In this article, starting with a non-reversible dynamics, we introduce and study an effective dynamics which approximates the (non-closed) projected dynamics. Under fairly weak conditions on the system, we prove error bounds on the trajectorial error between the projected and the effective dynamics. In addition to extending existing results to the non-reversible setting, our error estimates also indicate that the notion of mean force motivated by this effective dynamics is a good one.



rate research

Read More

This work is concerned with model reduction of stochastic differential equations and builds on the idea of replacing drift and noise coefficients of preselected relevant, e.g. slow variables by their conditional expectations. We extend recent results by Legoll & Leli`evre [Nonlinearity 23, 2131, 2010] and Duong et al. [Nonlinearity 31, 4517, 2018] on effective reversible dynamics by conditional expectations to the setting of general non-reversible processes with non-constant diffusion coefficient. We prove relative entropy and Wasserstein error estimates for the difference between the time marginals of the effective and original dynamics as well as an entropy error bound for the corresponding path space measures. A comparison with the averaging principle for systems with time-scale separation reveals that, unlike in the reversible setting, the effective dynamics for a non-reversible system need not agree with the averaged equations. We present a thorough comparison for the Ornstein-Uhlenbeck process and make a conjecture about necessary and sufficient conditions for when averaged and effective dynamics agree for nonlinear non-reversible processes. The theoretical results are illustrated with suitable numerical examples.
We study the weak limits of solutions to SDEs [dX_n(t)=a_nbigl(X_n(t)bigr),dt+dW(t),] where the sequence ${a_n}$ converges in some sense to $(c_- 1mkern-4.5mumathrm{l}_{x<0}+c_+ 1mkern-4.5mumathrm{l}_{x>0})/x+gammadelta_0$. Here $delta_0$ is the Dirac delta function concentrated at zero. A limit of ${X_n}$ may be a Bessel process, a skew Bessel process, or a mixture of Bessel processes.
We establish the existence of solutions to a class of non-linear stochastic differential equation of reaction-diffusion type in an infinite-dimensional space, with diffusion corresponding to a given transition kernel. The solution obtained is the scaling limit of a sequence of interacting particle systems, and satisfies the martingale problem corresponding to the target differential equation.
146 - Gechun Liang 2013
This paper shows that penalized backward stochastic differential equation (BSDE), which is often used to approximate and solve the corresponding reflected BSDE, admits both optimal stopping representation and optimal control representation. The new feature of the optimal stopping representation is that the player is allowed to stop at exogenous Poisson arrival times. The convergence rate of the penalized BSDE then follows from the optimal stopping representation. The paper then applies to two classes of equations, namely multidimensional reflected BSDE and reflected BSDE with a constraint on the hedging part, and gives stochastic control representations for their corresponding penalized equations.
165 - Rene Carmona 2013
The purpose of this paper is to provide a detailed probabilistic analysis of the optimal control of nonlinear stochastic dynamical systems of the McKean Vlasov type. Motivated by the recent interest in mean field games, we highlight the connection and the differences between the two sets of problems. We prove a new version of the stochastic maximum principle and give sufficient conditions for existence of an optimal control. We also provide examples for which our sufficient conditions for existence of an optimal solution are satisfied. Finally we show that our solution to the control problem provides approximate equilibria for large stochastic games with mean field interactions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا