Do you want to publish a course? Click here

The Spatial Correlation of Bent-Tail Galaxies and Galaxy Clusters

62   0   0.0 ( 0 )
 Added by Andrew O'Brien
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have completed a deep radio continuum survey covering 86 square degrees of the Spitzer-South Pole Telescope deep field to test whether bent-tail galaxies are associated with galaxy clusters. We present a new catalogue of 22 bent-tail galaxies and a further 24 candidate bent-tail galaxies. Surprisingly, of the 8 bent-tail galaxies with photometric redshifts, only two are associated with known clusters. While the absence of bent-tail sources in known clusters may be explained by effects such as sensitivity, the absence of known clusters associated with most bent-tail galaxies casts doubt upon current models of bent-tail galaxies.



rate research

Read More

We are conducting a large survey of distant clusters of galaxies using radio sources with bent jets and lobes as tracers. These radio sources are driven by AGN and achieve their bent morphologies through interaction with the surrounding gas found in clusters of galaxies. Based on low-redshift studies, these types of sources can be used to identify clusters very efficiently. We present initial results from our survey of 653 bent-double radio sources with optical hosts too faint to appear in the SDSS. The sample was observed in the infrared with Spitzer, and it has revealed $sim$200 distant clusters or proto-clusters in the redshift range $zsim0.7 - 3.0$. The sample of bent-doubles contains both quasars and radio galaxies enabling us to study both radiative and kinetic mode feedback in cluster and group environments at a wide range of redshifts.
We study the assembly of globular clusters (GCs) in 9 galaxy clusters using the cosmological simulation Illustris. GCs are tagged to individual galaxies at their infall time. The tidal removal of GCs from their galaxies and the distribution of the GCs within the cluster is later followed self-consistently by the simulation. The method relies on the simple assumption of a single power-law relation between halo mass (M_vir) and mass in GCs (M_GC) as found in observations. We find that the GCs specific frequency $S_N$ as a function of V-band magnitude naturally reproduces the observed U-shape, due to the combination of a power law M_GC-M_vir relation and the non-linear M_*-M_vir relation from the simulation. Additional scatter in the $S_N$ values are traced back to galaxies with early infall times due to the evolution in the M_*-M_vir relation with redshift. GCs that have been tidally removed from their galaxies form today the intra-cluster component from which about ~60% were brought in by galaxies that orbit today within the cluster potential. The remaining orphan GCs are contributed by satellite galaxies with a wide range of stellar masses that are fully tidally disrupted at z=0. This intra-cluster component is a good dynamical tracer of the dark matter potential. As a consequence of the accreted nature of most intra-cluster GCs, their orbits are fairly radial with a predicted orbital anisotropy beta >= 0.5. However, local tangential motions may appear as a consequence of localized substructure, providing a possible interpretation to the beta<0 values suggested in observations of M87.
In order to study the ram-pressure interaction between radio galaxies and the intracluster medium, we analyse a sample of 208 highly-bent narrow-angle tail radio sources (NATs) in clusters, detected by the LOFAR Two-metre Sky Survey. For NATs within $7,R_{500}$ of the cluster centre, we find that their tails are distributed anisotropically with a strong tendency to be bent radially away from the cluster, which suggests that they are predominantly on radially inbound orbits. Within $0.5,R_{500}$, we also observe an excess of NATs with their jets bent towards the cluster core, indicating that these outbound sources fade away soon after passing pericentre. For the subset of NATs with spectroscopic redshifts, we find the radial bias in the jet angles exists even out to $10,R_{500}$, far beyond the virial radius. The presence of NATs at such large radii implies that significant deceleration of the accompanying inflowing intergalactic medium must be occurring there to create the ram pressure that bends the jets, and potentially even triggers the radio source.
The relative average minimum projected separations of star clusters in the Legacy ExtraGalactic UV Survey (LEGUS) and in tidal dwarfs around the interacting galaxy NGC 5291 are determined as a function of cluster mass to look for cluster-cluster mass segregation. Class 2 and 3 LEGUS clusters, which have a more irregular internal structure than the compact and symmetric class 1 clusters, are found to be mass segregated in low mass galaxies, which means that the more massive clusters are systematically bunched together compared to the lower mass clusters. This mass segregation is not present in high-mass galaxies nor for class 1 clusters. We consider possible causes for this segregation including differences in cluster formation and scattering in the shallow gravitational potentials of low mass galaxies.
Stars are born within dense clumps of giant molecular clouds, constituting young stellar agglomerates known as embedded clusters, which only evolve into bound open clusters under special conditions. We statistically study all embedded clusters (ECs) and open clusters (OCs) known so far in the inner Galaxy, investigating particularly their interaction with the surrounding molecular environment and the differences in their evolution. We first compiled a merged list of 3904 clusters from optical and infrared clusters catalogs in the literature, including 75 new (mostly embedded) clusters discovered by us in the GLIMPSE survey. From this list, 695 clusters are within the Galactic range |l| < 60 deg and |b| < 1.5 deg covered by the ATLASGAL survey, which was used to search for correlations with submm dust continuum emission tracing dense molecular gas. We defined an evolutionary sequence of five morphological types: deeply embedded cluster (EC1), partially embedded cluster (EC2), emerging open cluster (OC0), OC still associated with a submm clump in the vicinity (OC1), and OC without correlation with ATLASGAL emission (OC2). Together with this process, we performed a thorough literature survey of these 695 clusters, compiling a considerable number of physical and observational properties in a catalog that is publicly available. We found that an OC defined observationally as OC0, OC1, or OC2 and confirmed as a real cluster is equivalent to the physical concept of OC (a bound exposed cluster) for ages in excess of ~16 Myr. Some observed OCs younger than this limit can actually be unbound associations. We found that our OC and EC samples are roughly complete up to ~1 kpc and ~1.8 kpc from the Sun, respectively, beyond which the completeness decays exponentially. Using available age estimates for a few ECs, we derived an upper limit of 3 Myr for the duration of the embedded phase... (Abridged)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا