No Arabic abstract
In this review paper, we illustrate a possible route to obtain a reliable solution of the 2D Hubbard model and an explanation for some of the unconventional behaviours of underdoped high-$T_text{c}$ cuprate superconductors within the framework of the composite operator method. The latter is described exhaustively in its fundamental philosophy, various ingredients and robust machinery to clarify the reasons behind its successful applications to many diverse strongly correlated systems, controversial phenomenologies and puzzling materials.
The microscopical analysis of the unconventional and puzzling physics of the underdoped cuprates, as carried out lately by means of the Composite Operator Method (COM) applied to the 2D Hubbard model, is reviewed and systematized. The 2D Hubbard model has been adopted as it has been considered the minimal model capable to describe the most peculiar features of cuprates held responsible for their anomalous behavior. COM is designed to endorse, since its foundations, the systematic emergence in any SCS of new elementary excitations described by composite operators obeying non-canonical algebras. In this case (underdoped cuprates - 2D Hubbard model), the residual interactions - beyond a 2-pole approximation - between the new elementary electronic excitations, dictated by the strong local Coulomb repulsion and well described by the two Hubbard composite operators, have been treated within the Non Crossing Approximation. Given this recipe and exploiting the few unknowns to enforce the Pauli principle content in the solution, it is possible to qualitatively describe some of the anomalous features of high-Tc cuprate superconductors such as large vs. small Fermi surface dichotomy, Fermi surface deconstruction (appearance of Fermi arcs), nodal vs. anti-nodal physics, pseudogap(s), kinks in the electronic dispersion. The resulting scenario envisages a smooth crossover between an ordinary weakly-interacting metal sustaining weak, short-range antiferromagnetic correlations in the overdoped regime to an unconventional poor metal characterized by very strong, long-but-finite-range antiferromagnetic correlations leading to momentum-selective non-Fermi liquid features as well as to the opening of a pseudogap and to the striking differences between the nodal and the anti-nodal dynamics in the underdoped regime.
Antiferromagnetism and $d$-wave superconductivity are the most important competing ground-state phases of cuprate superconductors. Using cellular dynamical mean-field theory (CDMFT) for the Hubbard model, we revisit the question of the coexistence and competition of these phases in the one-band Hubbard model with realistic band parameters and interaction strengths. With an exact diagonalization solver, we improve on previous works with a more complete bath parametrization which is carefully chosen to grant the maximal possible freedom to the hybridization function for a given number of bath orbitals. Compared with previous incomplete parametrizations, this general bath parametrization shows that the range of microscopic coexistence of superconductivity and antiferromagnetism is reduced for band parameters for NCCO, and confined to electron-doping with parameters relevant for YBCO.
We study the spin diffusion and spin conductivity in the square lattice Hubbard model by using the finite-temperature Lanczos method. We show that the spin diffusion behaves differently from the charge diffusion and has a nonmonotonic $T$ dependence. This is due to a progressive liberation of charges that contribute to spin transport and enhance it beyond that active at low temperature due to the Heisenberg exchange. We further show that going away from half-filling and zero magnetization increases the spin diffusion, but that the increase is insufficient to reconcile the difference between the model calculations and the recent measurements on cold-atoms.
The $2d$ Hubbard model with nearest-neighbour hopping on the square lattice and an average of one electron per site is known to undergo an extended crossover from metallic to insulating behavior driven by proliferating antiferromagnetic correlations. We study signatures of this crossover in spin and charge correlation functions and present results obtained with controlled accuracy using diagrammatic Monte Carlo in the range of parameters amenable to experimental verification with ultracold atoms in optical lattices. The qualitative changes in charge and spin correlations associated with the crossover are observed at well-separated temperature scales, which encase the intermediary regime of non-Fermi-liquid character, where local magnetic moments are formed and non-local fluctuations in both channels are essential.
Recent excperiments (ARPES, Raman) suggest the presence of two distinct energy gaps in high-Tc superconductors (HTSC), exhibiting different doping dependences. Results of a variational cluster approach to the superconducting state of the two-dimensional Hubbard model are presented which show that this model qualitatively describes this gap dichotomy: One gap (antinodal) increases with less doping, a behavior long considered as reflecting the general gap behavior of the HTSC. On the other hand, the near-nodal gap does even slightly decrease with underdoping. An explanation of this unexpected behavior is given which emphasizes the crucial role of spin fluctuations in the pairing mechanism.