No Arabic abstract
Self-consistent, time-dependent supernova (SN) simulations in three spatial dimensions (3D) are conducted with the Aenus-Alcar code, comparing, for the first time, calculations with fully multi-dimensional (FMD) neutrino transport and the ray-by-ray-plus (RbR+) approximation, both based on a two-moment solver with algebraic M1 closure. We find good agreement between 3D results with FMD and RbR+ transport for both tested grid resolutions in the cases of a 20 solar-mass progenitor, which does not explode with the employed simplified set of neutrino opacities, and of an exploding 9 solar-mass model. This is in stark contrast to corresponding axisymmetric (2D) simulations, which confirm previous claims that the RbR+ approximation can foster explosions in 2D in particular in models with powerful axial sloshing of the stalled shock due to the standing accretion shock instability (SASI). However, while local and instantaneous variations of neutrino fluxes and heating rates can still be considerably higher with RbR+ transport in 3D, the time-averaged quantities are very similar to FMD results because of the absence of a fixed, artificial symmetry axis that channels the flow. Therefore, except for stochastic fluctuations, the neutrino signals and the post-bounce evolution of 3D simulations with FMD and RbR+ transport are also very similar, in particular for our calculations with the better grid resolution. Higher spatial resolution has clearly a more important impact than the differences by the two transport treatments. Our results back up the use of the RbR+ approximation for neutrino transport in 3D SN modeling.
A set of eight self-consistent, time-dependent supernova (SN) simulations in three spatial dimensions (3D) for 9 solar-mass and 20 solar-mass progenitors is evaluated for the presence of dipolar asymmetries of the electron lepton-number emission as discovered by Tamborra et al. and termed lepton-number emission self-sustained asymmetry (LESA). The simulations were performed with the Aenus-Alcar neutrino/hydrodynamics code, which treats the energy- and velocity-dependent transport of neutrinos of all flavors by a two-moment scheme with algebraic M1 closure. For each of the progenitors, results with fully multi-dimensional (FMD) neutrino transport and with ray-by-ray-plus (RbR+) approximation are considered for two different grid resolutions. While the 9 solar-mass models develop explosions, the 20 solar-mass progenitor does not explode with the employed version of simplified neutrino opacities. In all 3D models we observe the growth of substantial dipole amplitudes of the lepton-number (electron neutrino minus antineutrino) flux with stable or slowly time-evolving direction and overall properties fully consistent with the LESA phenomenon. Models with RbR+ transport develop LESA dipoles somewhat faster and with temporarily higher amplitudes, but the FMD calculations exhibit cleaner hemispheric asymmetries with a far more dominant dipole. In contrast, the RbR+ results display much wider multipole spectra of the neutrino-emission anisotropies with significant power also in the quadrupole and higher-order modes. Our results disprove speculations that LESA is a numerical artifact of RbR+ transport. We also discuss LESA as consequence of a dipolar convection flow inside of the nascent neutron star and establish, tentatively, a connection to Chandrasekhars linear theory of thermal instability in spherical shells.
We present multi-dimensional core-collapse supernova simulations using the Isotropic Diffusion Source Approximation (IDSA) for the neutrino transport and a modified potential for general relativity in two different supernova codes: FLASH and ELEPHANT. Due to the complexity of the core-collapse supernova explosion mechanism, simulations require not only high-performance computers and the exploitation of GPUs, but also sophisticated approximations to capture the essential microphysics. We demonstrate that the IDSA is an elegant and efficient neutrino radiation transfer scheme, which is portable to multiple hydrodynamics codes and fast enough to investigate long-term evolutions in two and three dimensions. Simulations with a 40 solar mass progenitor are presented in both FLASH (1D and 2D) and ELEPHANT (3D) as an extreme test condition. It is found that the black hole formation time is delayed in multiple dimensions and we argue that the strong standing accretion shock instability before black hole formation will lead to strong gravitational waves.
We present new two-dimensional (2D) axisymmetric neutrino radiation/hydrodynamic models of core-collapse supernova (CCSN) cores. We use the CASTRO code, which incorporates truly multi-dimensional, multi-group, flux-limited diffusion (MGFLD) neutrino transport, including all relevant $mathcal{O}(v/c)$ terms. Our main motivation for carrying out this study is to compare with recent 2D models produced by other groups who have obtained explosions for some progenitor stars and with recent 2D VULCAN results that did not incorporate $mathcal{O}(v/c)$ terms. We follow the evolution of 12, 15, 20, and 25 solar-mass progenitors to approximately 600 milliseconds after bounce and do not obtain an explosion in any of these models. Though the reason for the qualitative disagreement among the groups engaged in CCSN modeling remains unclear, we speculate that the simplifying ``ray-by-ray approach employed by all other groups may be compromising their results. We show that ``ray-by-ray calculations greatly exaggerate the angular and temporal variations of the neutrino fluxes, which we argue are better captured by our multi-dimensional MGFLD approach. On the other hand, our 2D models also make approximations, making it difficult to draw definitive conclusions concerning the root of the differences between groups. We discuss some of the diagnostics often employed in the analyses of CCSN simulations and highlight the intimate relationship between the various explosion conditions that have been proposed. Finally, we explore the ingredients that may be missing in current calculations that may be important in reproducing the properties of the average CCSNe, should the delayed neutrino-heating mechanism be the correct mechanism of explosion.
We perform the first self-consistent, time-dependent, multi-group calculations in two dimensions (2D) to address the consequences of using the ray-by-ray+ transport simplification in core-collapse supernova simulations. Such a dimensional reduction is employed by many researchers to facilitate their resource-intensive calculations. Our new code (F{sc{ornax}}) implements multi-D transport, and can, by zeroing out transverse flux terms, emulate the ray-by-ray+ scheme. Using the same microphysics, initial models, resolution, and code, we compare the results of simulating 12-, 15-, 20-, and 25-M$_{odot}$ progenitor models using these two transport methods. Our findings call into question the wisdom of the pervasive use of the ray-by-ray+ approach. Employing it leads to maximum post-bounce/pre-explosion shock radii that are almost universally larger by tens of kilometers than those derived using the more accurate scheme, typically leaving the post-bounce matter less bound and artificially more explodable. In fact, for our 25-M$_{odot}$ progenitor, the ray-by-ray+ model explodes, while the corresponding multi-D transport model does not. Therefore, in two dimensions the combination of ray-by-ray+ with the axial sloshing hydrodynamics that is a feature of 2D supernova dynamics can result in quantitatively, and perhaps qualitatively, incorrect results.
We report on a set of long-term general-relativistic three-dimensional (3D) multi-group (energy-dependent) neutrino-radiation hydrodynamics simulations of core-collapse supernovae. We employ a full 3D two-moment scheme with the local M1 closure, three neutrino species, and 12 energy groups per species. With this, we follow the post-core-bounce evolution of the core of a nonrotating $27$-$M_odot$ progenitor in full unconstrained 3D and in octant symmetry for $gtrsim$$ 380,mathrm{ms}$. We find the development of an asymmetric runaway explosion in our unconstrained simulation. We test the resolution dependence of our results and, in agreement with previous work, find that low resolution artificially aids explosion and leads to an earlier runaway expansion of the shock. At low resolution, the octant and full 3D dynamics are qualitatively very similar, but at high resolution, only the full 3D simulation exhibits the onset of explosion.