Do you want to publish a course? Click here

Multispecies fruit flower detection using a refined semantic segmentation network

119   0   0.0 ( 0 )
 Added by Amy Tabb
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In fruit production, critical crop management decisions are guided by bloom intensity, i.e., the number of flowers present in an orchard. Despite its importance, bloom intensity is still typically estimated by means of human visual inspection. Existing automated computer vision systems for flower identification are based on hand-engineered techniques that work only under specific conditions and with limited performance. This work proposes an automated technique for flower identification that is robust to uncontrolled environments and applicable to different flower species. Our method relies on an end-to-end residual convolutional neural network (CNN) that represents the state-of-the-art in semantic segmentation. To enhance its sensitivity to flowers, we fine-tune this network using a single dataset of apple flower images. Since CNNs tend to produce coarse segmentations, we employ a refinement method to better distinguish between individual flower instances. Without any pre-processing or dataset-specific training, experimental results on images of apple, peach and pear flowers, acquired under different conditions demonstrate the robustness and broad applicability of our method.



rate research

Read More

120 - Linqing Zhao , Jiwen Lu , Jie Zhou 2021
In this paper, we propose a similarity-aware fusion network (SAFNet) to adaptively fuse 2D images and 3D point clouds for 3D semantic segmentation. Existing fusion-based methods achieve remarkable performances by integrating information from multiple modalities. However, they heavily rely on the correspondence between 2D pixels and 3D points by projection and can only perform the information fusion in a fixed manner, and thus their performances cannot be easily migrated to a more realistic scenario where the collected data often lack strict pair-wise features for prediction. To address this, we employ a late fusion strategy where we first learn the geometric and contextual similarities between the input and back-projected (from 2D pixels) point clouds and utilize them to guide the fusion of two modalities to further exploit complementary information. Specifically, we employ a geometric similarity module (GSM) to directly compare the spatial coordinate distributions of pair-wise 3D neighborhoods, and a contextual similarity module (CSM) to aggregate and compare spatial contextual information of corresponding central points. The two proposed modules can effectively measure how much image features can help predictions, enabling the network to adaptively adjust the contributions of two modalities to the final prediction of each point. Experimental results on the ScanNetV2 benchmark demonstrate that SAFNet significantly outperforms existing state-of-the-art fusion-based approaches across various data integrity.
Robot perception systems need to perform reliable image segmentation in real-time on noisy, raw perception data. State-of-the-art segmentation approaches use large CNN models and carefully constructed datasets; however, these models focus on accuracy at the cost of real-time inference. Furthermore, the standard semantic segmentation datasets are not large enough for training CNNs without augmentation and are not representative of noisy, uncurated robot perception data. We propose improving the performance of real-time segmentation frameworks on robot perception data by transferring features learned from synthetic segmentation data. We show that pretraining real-time segmentation architectures with synthetic segmentation data instead of ImageNet improves fine-tuning performance by reducing the bias learned in pretraining and closing the textit{transfer gap} as a result. Our experiments show that our real-time robot perception models pretrained on synthetic data outperform those pretrained on ImageNet for every scale of fine-tuning data examined. Moreover, the degree to which synthetic pretraining outperforms ImageNet pretraining increases as the availability of robot data decreases, making our approach attractive for robotics domains where dataset collection is hard and/or expensive.
To optimize fruit production, a portion of the flowers and fruitlets of apple trees must be removed early in the growing season. The proportion to be removed is determined by the bloom intensity, i.e., the number of flowers present in the orchard. Several automated computer vision systems have been proposed to estimate bloom intensity, but their overall performance is still far from satisfactory even in relatively controlled environments. With the goal of devising a technique for flower identification which is robust to clutter and to changes in illumination, this paper presents a method in which a pre-trained convolutional neural network is fine-tuned to become specially sensitive to flowers. Experimental results on a challenging dataset demonstrate that our method significantly outperforms three approaches that represent the state of the art in flower detection, with recall and precision rates higher than $90%$. Moreover, a performance assessment on three additional datasets previously unseen by the network, which consist of different flower species and were acquired under different conditions, reveals that the proposed method highly surpasses baseline approaches in terms of generalization capability.
In this paper, we present a joint multi-task learning framework for semantic segmentation and boundary detection. The critical component in the framework is the iterative pyramid context module (PCM), which couples two tasks and stores the shared latent semantics to interact between the two tasks. For semantic boundary detection, we propose the novel spatial gradient fusion to suppress nonsemantic edges. As semantic boundary detection is the dual task of semantic segmentation, we introduce a loss function with boundary consistency constraint to improve the boundary pixel accuracy for semantic segmentation. Our extensive experiments demonstrate superior performance over state-of-the-art works, not only in semantic segmentation but also in semantic boundary detection. In particular, a mean IoU score of 81:8% on Cityscapes test set is achieved without using coarse data or any external data for semantic segmentation. For semantic boundary detection, we improve over previous state-of-the-art works by 9.9% in terms of AP and 6:8% in terms of MF(ODS).
Most existing methods of semantic segmentation still suffer from two aspects of challenges: intra-class inconsistency and inter-class indistinction. To tackle these two problems, we propose a Discriminative Feature Network (DFN), which contains two sub-networks: Smooth Network and Border Network. Specifically, to handle the intra-class inconsistency problem, we specially design a Smooth Network with Channel Attention Block and global average pooling to select the more discriminative features. Furthermore, we propose a Border Network to make the bilateral features of boundary distinguishable with deep semantic boundary supervision. Based on our proposed DFN, we achieve state-of-the-art performance 86.2% mean IOU on PASCAL VOC 2012 and 80.3% mean IOU on Cityscapes dataset.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا