No Arabic abstract
The Knight Move Conjecture claims that the Khovanov homology of any knot decomposes as direct sums of some knight move pairs and a single pawn move pair. This is true for instance whenever the Lee spectral sequence from Khovanov homology to Q^2 converges on the second page, as it does for all alternating knots and knots with unknotting number at most 2. We present a counterexample to the Knight Move Conjecture. For this knot, the Lee spectral sequence admits a nontrivial differential of bidegree (1,8).
We show that the page at which the Lee spectral sequence collapses gives a bound on the unknotting number, u(K). In particular, for knots with u(K)<3, we show that the Lee spectral sequence must collapse at the E_2 page. An immediate corollary is that the Knight Move Conjecture is true when u(K)<3.
In the 3SUM-Indexing problem the goal is to preprocess two lists of elements from $U$, $A=(a_1,a_2,ldots,a_n)$ and $B=(b_1,b_2,...,b_n)$, such that given an element $cin U$ one can quickly determine whether there exists a pair $(a,b)in A times B$ where $a+b=c$. Goldstein et al.~[WADS2017] conjectured that there is no algorithm for 3SUM-Indexing which uses $n^{2-Omega(1)}$ space and $n^{1-Omega(1)}$ query time. We show that the conjecture is false by reducing the 3SUM-Indexing problem to the problem of inverting functions, and then applying an algorithm of Fiat and Naor [SICOMP1999] for inverting functions.
We show that all nontrivial members of the Kinoshita-Terasaka and Conway knot families satisfy the purely cosmetic surgery conjecture.
For a knot diagram we introduce an operation which does not increase the genus of the diagram and does not change its representing knot type. We also describe a condition for this operation to certainly decrease the genus. The proof involves the study of a relation between the genus of a virtual knot diagram and the genus of a knotoid diagram, the former of which has been introduced by Stoimenow, Tchernov and Vdovina, and the latter by Turaev recently. Our operation has a simple interpretation in terms of Gauss codes and hence can easily be computer-implemented.
The Hilbert-Smith Conjecture states that if G is a locally compact group which acts effectively on a connected manifold as a topological transformation group, then G is a Lie group. A rather straightforward proof of this conjecture is given. The motivation is work of Cernavskii (``Finite-to-one mappings of manifolds, Trans. of Math. Sk. 65 (107), 1964.) His work is generalized to the orbit map of an effective action of a p-adic group on compact connected n-manifolds with the aid of some new ideas. There is no attempt to use Smith Theory even though there may be similarities. It is well known that if a locally compact group acts effectively on a connected n-manifold M and G is not a Lie group, then there is a subgroup H of G isomorphic to a p-adic group A_p which acts effectively on M. It can be shown that A_p can not act effectively on an n-manifold and, hence, The Hilbert Smith Conjecture is true. The existence of a non empty fixed point set adds some complexity to the proof. In this paper, it is shown that A_p can not act freely on a compact connected n-manifold. The basic ideas for the general case are more clearly seen in this case. The general proof will be given in another paper.