With the developments of dual-lens camera modules,depth information representing the third dimension of thecaptured scenes becomes available for smartphones. It isestimated by stereo matching algorithms, taking as input thetwo views captured by dual-lens cameras at slightly differ-ent viewpoints. Depth-of-field rendering (also be referred toas synthetic defocus or bokeh) is one of the trending depth-based applications. However, to achieve fast depth estima-tion on smartphones, the stereo pairs need to be rectified inthe first place. In this paper, we propose a cost-effective so-lution to perform stereo rectification for dual-lens camerascalled direct self-rectification, short for DSR1. It removesthe need of individual offline calibration for every pair ofdual-lens cameras. In addition, the proposed solution isrobust to the slight movements, e.g., due to collisions, ofthe dual-lens cameras after fabrication. Different with ex-isting self-rectification approaches, our approach computesthe homography in a novel way with zero geometric distor-tions introduced to the master image. It is achieved by di-rectly minimizing the vertical displacements of correspond-ing points between the original master image and the trans-formed slave image. Our method is evaluated on both real-istic and synthetic stereo image pairs, and produces supe-rior results compared to the calibrated rectification or otherself-rectification approaches