Do you want to publish a course? Click here

A phase-field formulation for dynamic cohesive fracture

145   0   0.0 ( 0 )
 Added by Rudy Geelen
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We extend a phase-field/gradient damage formulation for cohesive fracture to the dynamic case. The model is characterized by a regularized fracture energy that is linear in the damage field, as well as non-polynomial degradation functions. Two categories of degradation functions are examined, and a process to derive a given degradation function based on a local stress-strain response in the cohesive zone is presented. The resulting model is characterized by a linear elastic regime prior to the onset of damage, and controlled strain-softening thereafter. The governing equations are derived according to macro- and microforce balance theories, naturally accounting for the irreversible nature of the fracture process by introducing suitable constraints for the kinetics of the underlying microstructural changes. The model is complemented by an efficient staggered solution scheme based on an augmented Lagrangian method. Numerical examples demonstrate that the proposed model is a robust and effective method for simulating cohesive crack propagation, with particular emphasis on dynamic fracture.



rate research

Read More

99 - Fan Fei , Jinhyun Choo 2020
Cracking of rocks and rock-like materials exhibits a rich variety of patterns where tensile (mode I) and shear (mode II) fractures are often interwoven. These mixed-mode fractures are usually cohesive (quasi-brittle) and frictional. Although phase-field modeling is increasingly used for rock fracture simulation, no phase-field formulation is available for cohesive and frictional mixed-mode fracture. To address this shortfall, here we develop a double-phase-field formulation that employs two different phase fields to describe cohesive tensile fracture and frictional shear fracture individually. The formulation rigorously combines the two phase fields through three approaches: (i) crack-direction-based decomposition of the strain energy into the tensile, shear, and pure compression parts, (ii) contact-dependent calculation of the potential energy, and (iii) energy-based determination of the dominant fracturing mode in each contact condition. We validate the proposed model, both qualitatively and quantitatively, with experimental data on mixed-mode fracture in rocks. The validation results demonstrate that the double-phase-field model -- a combination of two quasi-brittle phase-field models -- allows one to directly use material strengths measured from experiments, unlike brittle phase-field models for mixed-mode fracture in rocks. Another standout feature of the double-phase-field model is that it can simulate, and naturally distinguish between, tensile and shear fractures without complex algorithms.
We study experimentally the fracture mechanisms of a model cohesive granular medium consisting of glass beads held together by solidified polymer bridges. The elastic response of this material can be controlled by changing the cross-linking of the polymer phase, for example. Here we show that its fracture toughness can be tuned over an order of magnitude by adjusting the stiffness and size of the polymer bridges. We extract a well-defined fracture energy from fracture testing under a range of material preparations. This energy is found to scale linearly with the cross-sectional area of the bridges. Finally, X-ray microcomputed tomography shows that crack propagation is driven by adhesive failure of about one polymer bridge per bead located at the interface, along with microcracks in the vicinity of the failure plane. Our findings provide insight to the fracture mechanisms of this model material, and the mechanical properties of disordered cohesive granular media in general.
We consider a phase-field fracture propagation model, which consists of two (nonlinear) coupled partial differential equations. The first equation describes the displacement evolution, and the second is a smoothed indicator variable, describing the crack position. We propose an iterative scheme, the so-called $L$-scheme, with a dynamic update of the stabilization parameters during the iterations. Our algorithmic improvements are substantiated with two numerical tests. The dynamic adjustments of the stabilization parameters lead to a significant reduction of iteration numbers in comparison to constant stabilization values.
93 - Fan Fei , Jinhyun Choo 2020
Geologic shear fractures such as faults and slip surfaces involve marked friction along the discontinuities as they are subjected to significant confining pressures. This friction plays a critical role in the growth of these shear fractures, as revealed by the fracture mechanics theory of Palmer and Rice decades ago. In this paper, we develop a novel phase-field model of shear fracture in pressure-sensitive geomaterials, honoring the role of friction in the fracture propagation mechanism. Building on a recently proposed phase-field method for frictional interfaces, we formulate a set of governing equations for different contact conditions (or lack thereof) in which frictional energy dissipation emerges in the crack driving force during slip. We then derive the degradation function and the threshold fracture energy of the phase-field model such that the stress-strain behavior is insensitive to the length parameter for phase-field regularization. This derivation procedure extends a methodology used in recent phase-field models of cohesive tensile fracture to shear fracture in frictional materials in which peak and residual strengths coexist and evolve by confining pressure. The resulting phase-field formulation is demonstrably consistent with the theory of Palmer and Rice. Numerical examples showcase that the proposed phase-field model is a physically sound and numerically efficient method for simulating shear fracture processes in geologic materials, such as faulting and slip surface growth.
221 - N. Pugno , R. Ruoff 2005
A new quantum action-based theory, Dynamic Quantized Fracture Mechanics (DQFM), is presented that modifies continuum-based dynamic fracture mechanics. The crack propagation is assumed as quantized in both space and time. The static limit case corresponds to Quantized Fracture Mechanics (QFM), that we have recently developed to predict the strength of nanostructures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا