Do you want to publish a course? Click here

ASAS-SN Identification of FY Sct as a detached eclipsing binary system with a ~2.6 year period

151   0   0.0 ( 0 )
 Added by Tharindu Jayasinghe
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the identification of the bright (V${sim}13.3$ mag) star FY Sct as a long period detached eclipsing binary using a combined ASAS-SN and ASAS light curve spanning 2000-2018. The orbital period is P${sim}2.57$ years and the primary eclipse lasts ${sim}73$ days. The eclipse profile is suggestive of a disk eclipsing binary rather than a stellar component. We also detect ${sim}0.4$ mag pulsations with a period of P${sim78}$ d. The next eclipse begins on September, 28, 2018. Further photometric and spectroscopic observations are encouraged, particularly when the system is in eclipse.



rate research

Read More

We use ASAS V-band and ASAS-SN g-band observations to model the long-period detached eclipsing binary ASASSN-21co. ASAS observations show an eclipse of depth V ~ 0.6 mag in April of 2009. ASAS-SN g-band observations from March of 2021 show an eclipse of similar duration and depth, suggesting an orbital period of 11.9 years. We combine the g-band observations with additional BVRI photometry taken during the eclipse to model the eclipse using PHOEBE. We find that the system is best described by two M giants with a ratio of secondary radius to primary radius of ~0.61. Optical spectra taken during the eclipse are consistent with at least one component of the binary being an M giant, and we find no temporal changes in the spectral features. The eclipse itself is asymmetric, showing an increase in brightness near mid-eclipse, likely due to rotational variability that is too low amplitude to be observed out-of-eclipse.
We present an analysis of a new, detached, double-lined eclipsing binary system with K7 Ve components, discovered as part of the University of New South Wales Extrasolar Planet Search. The object is significant in that only 6 other binary systems are known with comparable or lower mass. Such systems offer important tests of mass-radius theoretical models. Follow-up photometry and spectroscopy were obtained with the 40-inch and 2.3m telescopes at SSO respectively. An estimate of the radial velocity amplitude from spectral absorption features, combined with the orbital inclination (83.5 deg) estimated from lightcurve fitting, yielded a total mass of M=(1.041 +/- 0.06)M_sun and component masses of M_A=(0.529 +/- 0.035)M_sun and M_B=(0.512 +/- 0.035)M_sun. The radial velocity amplitude estimated from absorption features (167 +/- 3)kmps was found to be less than the estimate from the H_alpha emission lines (175 +/- 1.5)kmps. The lightcurve fit produced radii of R_A=(0.641 +/- 0.05)R_sun and R_B=(0.608 +/- 0.06)R_sun, and a temperature ratio of T_B/T_A=0.980 +/- 0.015. The apparent magnitude of the binary was estimated to be V=13.9 +/- 0.2. Combined with the spectral type, this gave the distance to the binary as 169 +/- 14 pc. The timing of the secondary eclipse gave a lower limit on the eccentricity of the binary system of 0.0025 +/- 0.0005. This is the most statistically significant non-zero eccentricity found for such a system, possibly suggesting the presence of a third companion.
We report the discovery of ZTF J2243+5242, an eclipsing double white dwarf binary with an orbital period of just $8.8$ minutes, the second known eclipsing binary with an orbital period less than ten minutes. The system likely consists of two low-mass white dwarfs, and will merge in approximately 400,000 years to form either an isolated hot subdwarf or an R Coronae Borealis star. Like its $6.91, rm min$ counterpart, ZTF J1539+5027, ZTF J2243+5242 will be among the strongest gravitational wave sources detectable by the space-based gravitational-wave detector The Laser Space Interferometer Antenna (LISA) because its gravitational-wave frequency falls near the peak of LISAs sensitivity. Based on its estimated distance of $d=2120^{+131}_{-115},rm pc$, LISA should detect the source within its first few months of operation, and should achieve a signal-to-noise ratio of $87pm5$ after four years. We find component masses of $M_A= 0.349^{+0.093}_{-0.074},M_odot$ and $M_B=0.384^{+0.114}_{-0.074},M_odot$, radii of $R_A=0.0308^{+0.0026}_{-0.0025},R_odot$ and $R_B = 0.0291^{+0.0032}_{-0.0024},R_odot$, and effective temperatures of $T_A=22200^{+1800}_{-1600},rm K$ and $T_B=16200^{+1200}_{-1000},rm K$. We determined all of these properties, and the distance to this system, using only photometric measurements, demonstrating a feasible way to estimate parameters for the large population of optically faint ($r>21 , m_{rm AB}$) gravitational-wave sources which the Vera Rubin Observatory (VRO) and LISA should identify.
The analysis of eclipsing binaries containing non-radial pulsators allows: i) to combine two different and independent sources of information on the internal structure and evolutionary status of the components, and ii) to study the effects of tidal forces on pulsations. KIC 3858884 is a bright Kepler target whose light curve shows deep eclipses, complex pulsation patterns with pulsation frequencies typical of {delta} Sct, and a highly eccentric orbit. We present the result of the analysis of Kepler photometry and of high resolution phaseresolved spectroscopy. Spectroscopy yielded both the radial velocity curves and, after spectral disentangling, the primary component effective temperature and metallicity, and line-of-sight projected rotational velocities. The Kepler light curve was analyzed with an iterative procedure devised to disentangle eclipses from pulsations which takes into account the visibility of the pulsating star during eclipses. The search for the best set of binary parameters was performed combining the synthetic light curve models with a genetic minimization algorithm, which yielded a robust and accurate determination of the system parameters. The binary components have very similar masses (1.88 and 1.86 Msun) and effective temperatures (6800 and 6600 K), but different radii (3.45 and 3.05 Rsun). The comparison with the theoretical models evidenced a somewhat different evolutionary status of the components and the need of introducing overshooting in the models. The pulsation analysis indicates a hybrid nature of the pulsating (secondary) component, the corresponding high order g-modes might be excited by an intrinsic mechanism or by tidal forces.
Building on previous work, a new search of the SuperWASP archive was carried out to identify eclipsing binary systems near the short-period limit. 143 candidate objects were detected with orbital periods between 16000 and 20000 s, of which 97 are new discoveries. Period changes significant at 1 sigma or more were detected in 74 of these objects, and in 38 the changes were significant at 3 sigma or more. The significant period changes observed followed an approximately normal distribution with a half-width at half-maximum of ~0.1 s/yr. There was no apparent relationship between period length and magnitude or direction of period change. Amongst several interesting individual objects studied, 1SWASP J093010.78+533859.5 is presented as a new doubly eclipsing quadruple system, consisting of a contact binary with a 19674.575 s period and an Algol-type binary with a 112799.109 s period, separated by 66.1 AU, being the sixth known system of this type.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا