Do you want to publish a course? Click here

Lyman-$alpha$ forest and non-linear structure characterization in Fuzzy Dark Matter cosmologies

73   0   0.0 ( 0 )
 Added by Matteo Nori
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fuzzy Dark Matter (FDM) represents an alternative and intriguing description of the standard Cold Dark Matter (CDM) fluid, able to explain the lack of direct detection of dark matter particles in the GeV sector and to alleviate small scales tensions in the cosmic large-scale structure formation. Cosmological simulations of FDM models in the literature were performed either with very expensive high-resolution grid-based simulations of individual haloes or through N-body simulations encompassing larger cosmic volumes but resorting on significant approximations in the FDM non-linear dynamics to reduce their computational cost. With the use of the new N-body cosmological hydrodynamical code AX-GADGET, we are now able not only to overcome such numerical problems, but also to combine a fully consistent treatment of FDM dynamics with the presence of gas particles and baryonic physical processes, in order to quantify the FDM impact on specific astrophysical observables. In particular, in this paper we perform and analyse several hydrodynamical simulations in order to constrain the FDM mass by quantifying the impact of FDM on Lyman-$alpha$ forest observations, as obtained for the first time in the literature in a N-body setup without approximating the FDM dynamics. We also study the statistical properties of haloes, exploiting the large available sample, to extract information on how FDM affects the abundance, the shape, and density profiles of dark matter haloes.



rate research

Read More

We present constraints on the masses of extremely light bosons dubbed fuzzy dark matter from Lyman-$alpha$ forest data. Extremely light bosons with a De Broglie wavelength of $sim 1$ kpc have been suggested as dark matter candidates that may resolve some of the current small scale problems of the cold dark matter model. For the first time we use hydrodynamical simulations to model the Lyman-$alpha$ flux power spectrum in these models and compare with the observed flux power spectrum from two different data sets: the XQ-100 and HIRES/MIKE quasar spectra samples. After marginalization over nuisance and physical parameters and with conservative assumptions for the thermal history of the IGM that allow for jumps in the temperature of up to $5000rm,K$, XQ-100 provides a lower limit of 7.1$times 10^{-22}$ eV, HIRES/MIKE returns a stronger limit of 14.3$times 10^{-22}$ eV, while the combination of both data sets results in a limit of 20 $times 10^{-22}$ eV (2$sigma$ C.L.). The limits for the analysis of the combined data sets increases to 37.5$times 10^{-22}$ eV (2$sigma$ C.L.) when a smoother thermal history is assumed where the temperature of the IGM evolves as a power-law in redshift. Light boson masses in the range $1-10 times10^{-22}$ eV are ruled out at high significance by our analysis, casting strong doubts that FDM helps solve the small scale crisis of the cold dark matter models.
With recent Lyman-alpha forest data from BOSS and XQ-100, some studies suggested that the lower mass limit on the fuzzy dark matter (FDM) particles is lifted up to $10^{-21},mathrm{eV}$. However, such a limit was obtained by $Lambda$CDM simulations with the FDM initial condition and the quantum pressure (QP) was not taken into account which could have generated non-trivial effects in large scales structures. We investigate the QP effects in cosmological simulations systematically, and find that the QP leads to further suppression of the matter power spectrum at small scales, as well as the halo mass function in the low mass end. We estimate the suppressing effect of QP in the 1D flux power spectrum of Lyman-alpha forest and compare it with data from BOSS and XQ-100. The rough uncertainties of thermal gas properties in the flux power spectrum model calculation were discussed. We conclude that more systematic studies, especially with QP taken into account, are necessary to constrain FDM particle mass using Lyman-alpha forest.
The renewed interest in the possibility that primordial black holes (PBHs) may constitute a significant part of the dark matter has motivated revisiting old observational constraints, as well as developing new ones. We present new limits on the PBH abundance, from a comprehensive analysis of high-resolution, high-redshift Lyman-$alpha$ forest data. Poisson fluctuations in the PBH number density induce a small-scale power enhancement which departs from the standard cold dark matter prediction. Using a grid of hydrodynamic simulations exploring different values of astrophysical parameters, {we obtain a marginalized upper limit on the PBH mass of $f_{rm PBH}M_{rm PBH} sim 60~M_{odot}$ at $2sigma$, when a Gaussian prior on the reionization redshift is imposed, preventing its posterior distribution to peak on very high values, which are disfavoured by the most recent estimates obtained both through Cosmic Microwave Background and Inter-Galactic Medium observations. Such bound weakens to $f_{rm PBH}M_{rm PBH} sim 170~M_{odot}$, when a conservative flat prior is instead assumed. Both limits significantly improves previous constraints from the same physical observable.} We also extend our predictions to non-monochromatic PBH mass distributions, ruling out large regions of the parameter space for some of the most viable PBH extended mass functions.
Interpreting observations of the Lyman-$alpha$ forest flux power spectrum requires interpolation between a small number of expensive simulations. We present a Gaussian process emulator modelling the 1D flux power spectrum as a function of the amplitude and slope of the small-scale linear matter power spectrum, and the state of the intergalactic medium at the epoch of interest ($2 < z < 4$). This parameterisation enables the prediction of the flux power spectrum in extended cosmological models that are not explicitly included in the training set, eliminating the need to construct bespoke emulators for a number of extensions to $Lambda$CDM. Our emulator is appropriate for cosmologies in which the linear matter power spectrum is described to percent level accuracy by just an amplitude and slope across the epoch of interest, and in the regime probed by eBOSS/DESI data. We demonstrate this for massive neutrino cosmologies, where the emulator is able to predict the flux power spectrum in a $Sigma m_ u=0.3$ eV neutrino cosmology to sub-percent accuracy, without including massive neutrinos in the training simulations. Further parameters would be required to describe models with sharp features in the linear power, such as warm or light axion dark matter. This work will facilitate the combination of upcoming DESI data with observations of the cosmic microwave background, to obtain constraints on neutrino mass and other extensions to $Lambda$CDM cosmology.
The Lyman-$alpha$ forest is a valuable probe of dark matter models featuring a scale-dependent suppression of the power spectrum as compared to $Lambda$CDM. In this work, we present a new estimator of the Lyman-$alpha$ flux power spectrum that does not rely on hydrodynamical simulations. Our framework is characterized by nuisance parameters that encapsulate the complex physics of the intergalactic medium and sensitivity to highly non-linear small-scale modes. After validating the approach based on high-resolution hydrodynamical simulations for $Lambda$CDM, we derive conservative constraints on interacting dark matter models from BOSS Lyman-$alpha$ data on large scales, k<0.02(km/s)^(-1), with the relevant nuisance parameters left free in the model fit. The estimator yields lower bounds on the mass of cannibal dark matter, where freeze-out occurs through 3-to-2 annihilation, in the MeV range. Furthermore, we find that models of dark matter interacting with dark radiation, which have been argued to address the $H_0$ and $sigma_8$ tensions, are compatible with BOSS Lyman-$alpha$ data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا