Do you want to publish a course? Click here

New Photometric Pipeline to Explore Temporal and Spatial Variability with KMTNet DEEP-South Observations

63   0   0.0 ( 0 )
 Added by Seo-Won Chang
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The DEEP-South photometric census of small Solar System bodies produces massive time-series data of variable, transient or moving objects as a by-product. To fully investigate unexplored variable phenomena, we present an application of multi-aperture photometry and FastBit indexing techniques for faster access to a portion of the DEEP-South year-one data. Our new pipeline is designed to perform automated point source detection, robust high-precision photometry and calibration of non-crowded fields which have overlap with previously surveyed areas. In this paper, we show some examples of catalog-based variability searches to find new variable stars and to recover targeted asteroids. We discover 21 new periodic variables with period ranging between 0.1 and 31 days, including four eclipsing binary systems (detached, over-contact, and ellipsoidal variables), one white dwarf/M dwarf pair candidate, and rotating variable stars. We also recover astrometry ($<pm$1--2 arcsec level accuracy) and photometry of two targeted near-earth asteroids, 2006 DZ169 and 1996 SK, along with the small- ($sim$0.12 mag) and relatively large-amplitude ($sim$0.5 mag) variations of their dominant rotational signals in $R$-band.



rate research

Read More

We derive the geometric albedo of a near-Earth asteroid, (4179) Toutatis, to investigate its surface physical conditions. The asteroid has been studied rigorously not only via ground-based photometric, spectrometric, polarimetric, and radar observations but also via textit{in situ} observation by the Chinese Change-2 space probe; however, its geometric albedo is not well understood. We conducted V-band photometric observations when the asteroid was at opposition in April 2018 using the three telescopes in the southern hemisphere that compose the Korea Microlensing Telescope Network (KMTNet). The observed time-variable cross section was corrected using the radar shape model. We find that Toutatis has a geometric albedo $p_mathrm{V} = 0.185^{+0.045}_{-0.039} $, which is typical of S-type asteroids. We compare the geometric albedo with archival polarimetric data and further find that the polarimetric slope--albedo law provides a reliable estimate for the albedo of this S-type asteroid. The thermal infrared observation also produced similar results if the size of the asteroid is updated to match the results from Change-2. We conjecture that the surface of Toutatis is covered with grains smaller than that of the near-Sun asteroids including (1566) Icarus and (3200) Phaethon.
99 - L. Eyer , N. Mowlavi , D.W. Evans 2017
The ESA Gaia mission provides a unique time-domain survey for more than one billion sources brighter than G=20.7 mag. Gaia offers the unprecedented opportunity to study variability phenomena in the Universe thanks to multi-epoch G-magnitude photometry in addition to astrometry, blue and red spectro-photometry, and spectroscopy. Within the Gaia Consortium, Coordination Unit 7 has the responsibility to detect variable objects, classify them, derive characteristic parameters for specific variability classes, and provide global descriptions of variable phenomena. We describe the variability processing and analysis that we plan to apply to the successive data releases, and we present its application to the G-band photometry results of the first 14 months of Gaia operations that comprises 28 days of Ecliptic Pole Scanning Law and 13 months of Nominal Scanning Law. Out of the 694 million, all-sky, sources that have calibrated G-band photometry in this first stage of the mission, about 2.3 million sources that have at least 20 observations are located within 38 degrees from the South Ecliptic Pole. We detect about 14% of them as variable candidates, among which the automated classification identified 9347 Cepheid and RR Lyrae candidates. Additional visual inspections and selection criteria led to the publication of 3194 Cepheid and RR Lyrae stars, described in Clementini et al. (2016). Under the restrictive conditions for DR1, the completenesses of Cepheids and RR Lyrae stars are estimated at 67% and 58%, respectively, numbers that will significantly increase with subsequent Gaia data releases. Data processing within the Gaia Consortium is iterative, the quality of the data and the results being improved at each iteration. The results presented in this article show a glimpse of the exceptional harvest that is to be expected from the Gaia mission for variability phenomena. [abridged]
The ASTEP project aims at detecting and characterizing transiting planets from Dome C, Antarctica, and qualifying this site for photometry in the visible. The first phase of the project, ASTEP South, is a fixed 10 cm diameter instrument pointing continuously towards the celestial South pole. Observations were made almost continuously during 4 winters, from 2008 to 2011. The point-to-point RMS of 1-day photometric lightcurves can be explained by a combination of expected statistical noises, dominated by the photon noise up to magnitude 14. This RMS is large, from 2.5 mmag at R=8 to 6% at R=14, because of the small size of ASTEP South and the short exposure time (30 s). Statistical noises should be considerably reduced using the large amount of collected data. A 9.9-day period eclipsing binary is detected, with a magnitude R=9.85. The 2-season lightcurve folded in phase and binned into 1000 points has a RMS of 1.09 mmag, for an expected photon noise of 0.29 mmag. The use of the 4 seasons of data with a better detrending algorithm should yield a sub-millimagnitude precision for this folded lightcurve. Radial velocity follow-up observations are conducted and reveal a F-M binary system. The detection of this 9.9-day period system with a small instrument such as ASTEP South and the precision of the folded lightcurve show the quality of Dome C for continuous photometric observations, and its potential for the detection of planets with orbital period longer than those usually detected from the ground.
551 - Zhong Liu , Jun Xu , Bo-Zhong Gu 2014
The New Vacuum Solar Telescope (NVST) is a 1 meter vacuum solar telescope that aims to observe the fine structures on the Sun. The main tasks of NVST are high resolution imaging and spectral observations, including the measurements of solar magnetic field. NVST is the primary ground-based facility of Chinese solar community in this solar cycle. It is located by the Fuxian Lake of southwest China, where the seeing is good enough to perform high resolution observations. In this paper, we first introduce the general conditions of Fuxian Solar Observatory and the primary science cases of NVST. Then, the basic structures of this telescope and instruments are described in detail. Finally, some typical high resolution data of solar photosphere and chromosphere are also shown.
Photometric measurements are prone to systematic errors presenting a challenge to low-amplitude variability detection. In search for a general-purpose variability detection technique able to recover a broad range of variability types including currently unknown ones, we test 18 statistical characteristics quantifying scatter and/or correlation between brightness measurements. We compare their performance in identifying variable objects in seven time series data sets obtained with telescopes ranging in size from a telephoto lens to 1m-class and probing variability on time-scales from minutes to decades. The test data sets together include lightcurves of 127539 objects, among them 1251 variable stars of various types and represent a range of observing conditions often found in ground-based variability surveys. The real data are complemented by simulations. We propose a combination of two indices that together recover a broad range of variability types from photometric data characterized by a wide variety of sampling patterns, photometric accuracies, and percentages of outlier measurements. The first index is the interquartile range (IQR) of magnitude measurements, sensitive to variability irrespective of a time-scale and resistant to outliers. It can be complemented by the ratio of the lightcurve variance to the mean square successive difference, 1/h, which is efficient in detecting variability on time-scales longer than the typical time interval between observations. Variable objects have larger 1/h and/or IQR values than non-variable objects of similar brightness. Another approach to variability detection is to combine many variability indices using principal component analysis. We present 124 previously unknown variable stars found in the test data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا