We study an entanglement transfer protocol in a two-leg ladder spin-1/2 chain in the presence of disorder. In the regime where on-site energies and the intrachain couplings follow aproximately constant proportions locally, we set up a scheme for high-fidelity state transfer via a disorder-protected subspace wherein fluctuations in the parameters do not depend on the global disorder of the system, accounted by $W$. Moreover, we find that the leakage of information from that subspace is actually suppressed upon increasing $W$ and thus the transfer fidelity, evaluated through the entanglement concurrence at the other end of the chain, builds up with the disorder strength.