No Arabic abstract
We present and discuss medium resolution (R $sim$ 13000), high signal-to-noise ($mathrm{frac{S}{N}} sim 100$), spectroscopic observations in the field of the open clusters NGC,6940 and Tombaugh,5. Spectra were recorded for seven candidate red giant stars in both clusters. For the latter we present the very first chemical abundance analysis. We derive radial velocities for all the stars in NGC,6940, confirming membership to the cluster for all of them, while on the same ground we exclude two stars in To,5. We perform a chemical abundance analysis of different atomic species, in particular FeI, SiI, CaI, TiI and NiI. The mean metallicity of NGC,6940 is [Fe/H]=+0.09$pm$0.06,dex, in good agreement with previous works, while for To,5 is [Fe/H]=+0.06$pm$0.11,dex. Therefore, both clusters exhibit a chemical composition close to the solar value, and do not deviate from the [Fe/H] Galactic radial abundance gradient. With these new values we estimate the fundamental cluster parameters, after having derived clusters distances from the textit{Gaia} DR2 database. By adopting these distances, we derive updated estimated for the clusters ages: 1.0$pm$0.1,Gyr of NGC,6940 and 0.25$pm$0.05 Gyr for Tombaugh,5.
We present radial velocities and chemical abundances for red giant branch stars in the Galactic bulge globular clusters NGC 6342 and NGC 6366. The velocities and abundances are based on measurements of high resolution (R > 20,000) spectra obtained with the MMT-Hectochelle and WIYN-Hydra spectrographs. We find that NGC 6342 has a heliocentric radial velocity of +112.5 km/s (sigma = 8.6 km/s), NGC 6366 has a heliocentric radial velocity of -122.3 km/s (sigma = 1.5 km/s), and that both clusters have nearly identical metallicities ([Fe/H] ~ -0.55). NGC 6366 shows evidence of a moderately extended O-Na anti-correlation, but more data are needed for NGC 6342 to determine if this cluster also exhibits the typical O-Na relation likely found in all other Galactic globular clusters. The two clusters are distinguished from similar metallicity field stars as having larger [Na/Fe] spreads and enhanced [La/Fe] ratios, but we find that NGC 6342 and NGC 6366 display alpha and Fe-peak element abundance patterns that are typical of other metal-rich ([Fe/H] > -1) inner Galaxy clusters. However, the median [La/Fe] abundance may vary from cluster-to-cluster.
We present and discuss radial velocity and the very first metallicity measurements for nine evolved stars in the poorly known old open cluster NGC 7762. We isolated eight radial velocity cluster members and one interloper. Radial velocities are in good agreement with previous studies. NGC 7762 turns out to be of solar metallicity within the uncertainties ([Fe/H]=0.04$pm$0.12). For this metallicity, the cluster age is 2.5$pm$0.2 Gyr, and falls in a age range where only a few old open clusters are known. With respect to previous studies, we find a larger distance, implying the cluster to be located at 900$^{+70}_{-50}$ pc from the Sun. For most of the elements we measure solar-scaled abundance ratios. We searched the literature for open clusters of similar age in the solar vicinity and found that NGC 7762 can be considered a twin of Ruprecht 147, a similar age cluster located at only 300 pc from the Sun. In fact, beside age, also metallicity and abundance ratios are very close to Ruprecht 147 values within the observational uncertainties.
Galactic open clusters have been long recognized as one of the best tools to investigate the chemical content of Galactic disk and its time evolution. In the last decade, many efforts have been directed to chemically characterize the old and intermediate age population; surprisingly, the chemical content of the younger and close counterpart remains largely undetermined. In this paper we present the abundance analysis of a sample of 15 G/K members of the young pre-main sequence clusters IC 2602 and IC 2391. Along with IC 4665, these are the first pre-main sequence clusters for which a detailed abundance determination has been carried out so far. We analyzed high-resolution, high S/N spectra acquired with different instruments (UVES and CASPEC at ESO, and the echelle spectrograph at CTIO), using MOOG and equivalent width measurements. Along with metallicity ([Fe/H]), we measured NaI, SiI, CaI, TiI and TiII, and NiI abundances. Stars cooler than ~5500 show lower CaI, TiI, and NaI than warmer stars. By determining TiII abundances, we show that, at least for Ti, this effect is due to NLTE and over-ionization. We find average metallicities [Fe/H] =0$pm 0.01$ and [Fe/H]=0.01$pm$ 0.02 for IC 2602 and IC 2391, respectively. All the [X/Fe] ratios show a solar composition; the accurate measurements allow us to exclude the presence of star-to-star scatter among the members.
We present a study, based on Gaia DR2, of the population of blue straggler stars (BSS) in the open clusters Trumpler 5, Trumpler 20, and NGC 2477. All candidates were selected according to their position in the color-magnitude diagram, to their proper motion components, and to their parallax. We also looked for yellow stragglers, i.e., possible evolved blue stragglers. We found that Trumpler 5 hosts a large BSS population, which allowed us to analyze their radial distribution as a probe of the clusters dynamical status. The BSS distribution was compared with that of red giant branch stars (RGB) to evaluate mass segregation. Our results indicate that blue straggler stars are not more centrally concentrated than RGB stars in any of the clusters. The radial distribution of BSS in Trumpler 5 is flat. Additionally, using a multi-epoch radial velocity survey conducted with the high-resolution spectrograph FLAMES/GIRAFFE at VLT, we measured the radial velocities of a sample of stragglers, for the sake of comparison with the mean radial velocity and the velocity dispersion of the clusters. Based on the radial velocity variations for different epochs, we roughly classified these stars as possible close-or long-period binaries.
The stellar content of Galactic open clusters is gradually depleted during their evolution as a result of internal relaxation and external interactions. The final residues of the evolution of open clusters are called open cluster remnants, barely distinguishable from the field. We aimed to characterise and compare the dynamical states of a set of 16 such objects. The sample also includes 7 objects that are catalogued as dynamically evolved open clusters. We used photometric data from the 2MASS, astrometric data from the GAIA DR2 and a decontamination algorithm that was applied to the three-dimensional astrometric space of proper motions and parallaxes for stars in the objects areas. The luminosity and mass functions and total masses for most open cluster remnants are derived here for the first time. Our analysis used predictions of N-body simulations to estimate the initial number of stars of the remnants from their dissolution timescales. The investigated open cluster remnants present masses and velocity dispersions within well-defined ranges: M between ~10-40M_Sun and sigma_v between ~1-7km/s. Some objects in the remnant sample have a limiting radius R_lim<~2pc, which means that they are more compact than the investigated open clusters; other remnants have R_lim between ~2-7pc, which is comparable to the open clusters. We suggest that the open cluster NGC2180 is entering a remnant evolutionary stage. In general, our clusters show signals of depletion of low-mass stars. This confirms their dynamically evolved states. We conclude that the open cluster remnants we studied are in fact remnants of initially very populous open clusters (No~10^3-10^4 stars). The outcome of the long-term evolution is to bring the final residues of the open clusters to dynamical states that are similar to each other, thus masking out the memory of the initial formation conditions of star clusters.