Do you want to publish a course? Click here

Quantum sensing using imbalanced counter-rotating Bose--Einstein condensate modes

47   0   0.0 ( 0 )
 Added by Gerard Pelegr\\'i
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

A quantum device for measuring two-body interactions, scalar magnetic fields and rotations is proposed using a Bose--Einstein condensate (BEC) in a ring trap. We consider an imbalanced superposition of orbital angular momentum modes with opposite winding numbers for which a rotating minimal atomic density line appears. We derive an analytical model relating the angular frequency of the minimal density line rotation to the strength of the non-linear atom-atom interactions and the difference between the populations of the counter-propagating modes. Additionally, we propose a full experimental protocol based on direct fluorescence imaging of the BEC that allows to measure all the quantities involved in the analytical model and use the system for sensing purposes.



rate research

Read More

219 - Zhao Liu , Hongli Guo , Shu Chen 2009
We investigate the 2D weakly interacting Bose-Einstein condensate in a rotating trap by the tools of quantum information theory. The critical exponents of the ground state fidelity susceptibility and the correlation length of the system are obtained for the quantum phase transition when the frst vortex is formed. We also find the single-particle entanglement can be an indicator of the angular momentums for some real ground states. The single-particle entanglement of fractional quantum Hall states such as Laughlin state and Pfaffian state is also studied.
PT-symmetric quantum mechanics allows finding stationary states in mean-field systems with balanced gain and loss of particles. In this work we apply this method to rotating Bose-Einstein condensates with contact interaction which are known to support ground states with vortices. Due to the particle exchange with the environment transport phenomena through ultracold gases with vortices can be studied. We find that even strongly interacting rotating systems support stable PT-symmetric ground states, sustaining a current parallel and perpendicular to the vortex cores. The vortices move through the non-uniform particle density and leave or enter the condensate through its borders creating the required net current.
187 - Z. F. Xu , P. Zhang , R. Lu 2010
We propose a pump scheme for quantum circulations, including counter-circulations for superposition states, of a spinor Bose-Einstein condensate. Our scheme is efficient and can be implemented within current experimental technologies and setups. It remains valid for non-classical atomic states, such as pseudo-spin squeezed states and maximal entangled N-GHZ or NooN states. Moreover, it is capable of transforming several enhanced sensing protocols relying on reduced fluctuations from quantum correlation and entanglement of atomic internal states to enhanced measurement of spatial interference and rotation.
A scissors mode of a rotating Bose-Einstein condensate is investigated both theoretically and experimentally. The condensate is confined in an axi-symmetric harmonic trap, superimposed with a small rotating deformation. For angular velocities larger than $omega_perp/sqrt2 $, where $omega_perp$ is the radial trap frequency, the frequency of the scissors mode is predicted to vanish like the square root of the deformation, due to the tendency of the system to exhibit spontaneous rotational symmetry breaking. Measurements of the frequency confirm the predictions of theory. Accompanying characteristic oscillations of the internal shape of the condensate are also calculated and observed experimentally.
High-precision gyroscopes are a key component of inertial navigation systems. By considering matter wave gyroscopes that make use of entanglement it should be possible to gain some advantages in terms of sensitivity, size, and resources used over unentangled optical systems. In this paper we consider the details of such a quantum-enhanced atom interferometry scheme based on atoms trapped in a carefully-chosen rotating trap. We consider all the steps: entanglement generation, phase imprinting, and read-out of the signal and show that quantum enhancement should be possible in principle. While the improvement in performance over equivalent unentangled schemes is small, our feasibility study opens the door to further developments and improvements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا