No Arabic abstract
The social brain hypothesis postulates the increasing complexity of social interactions as a driving force for the evolution of cognitive abilities. Whereas dyadic and triadic relations play a basic role in defining social behaviours and pose many challenges for the social brain, individuals in animal societies typically belong to relatively large networks. How the structure and dynamics of these networks also contribute to the evolution of cognition, and vice versa, is less understood. Here we review how collective phenomena can occur in systems where social agents do not require sophisticated cognitive skills, and how complex networks can grow from simple probabilistic rules, or even emerge from the interaction between agents and their environment, without explicit social factors. We further show that the analysis of social networks can be used to develop good indicators of social complexity beyond the individual or dyadic level. We also discuss the types of challenges that the social brain must cope with in structured groups, such as higher information fluxes, originating from individuals playing different roles in the network, or dyadic contacts of widely varying durations and frequencies. We discuss the relevance of these ideas for primates and other animals societies.
Although social neuroscience is concerned with understanding how the brain interacts with its social environment, prevailing research in the field has primarily considered the human brain in isolation, deprived of its rich social context. Emerging work in social neuroscience that leverages tools from network analysis has begun to pursue this issue, advancing knowledge of how the human brain influences and is influenced by the structures of its social environment. In this paper, we provide an overview of key theory and methods in network analysis (especially for social systems) as an introduction for social neuroscientists who are interested in relating individual cognition to the structures of an individuals social environments. We also highlight some exciting new work as examples of how to productively use these tools to investigate questions of relevance to social neuroscientists. We include tutorials to help with practical implementation of the concepts that we discuss. We conclude by highlighting a broad range of exciting research opportunities for social neuroscientists who are interested in using network analysis to study social systems.
Kompromat (the Russian word for compromising material) has been efficiently used to harass Russian political and business elites since the days of the USSR. Online crowdsourcing projects such as RuCompromat made it possible to catalog and analyze kompromat using quantitative techniques -- namely, social network analysis. In this paper, we constructed a social network of 11,000 Russian and foreign nationals affected by kompromat in Russia in 1991 -- 2020. The network has an excellent modular structure with 62 dense communities. One community contains prominent American officials, politicians, and entrepreneurs (including President Donald Trump) and appears to concern Russias controversial interference in the 2016 U.S. presidential elections. Various network centrality measures identify seventeen most central kompromat figures, with President Vladimir Putin solidly at the top. We further reveal four types of communities dominated by entrepreneurs, politicians, bankers, and law enforcement officials (siloviks), the latter disjointed from the first three.
We discuss a set of computational techniques, called Inductive Game Theory, for extracting strategic decision-making rules from time series data and constructing probabilistic social circuits. We construct these circuits by connecting component individuals and groups with strategies in a game and propose an inductive approach to reconstructing the edges. We demonstrate this approach with conflict behavior in a society of pigtailed macaques by identifying significant patterns in decision-making by individuals. With the constructed circuit, we then capture macroscopic features of the system that were not specified in the construction of the initial circuit, providing a mapping between individual level behaviors to collective behaviors over the scale of the group. We extend on previous work in Inductive Game Theory by more efficiently searching the space of possible strategies by grouping individuals into socially relevant sets to produce a more efficient, parsimonious specification of the underlying interactions between components. We discuss how we reduce the dimensionality of these circuits using coarse-graining or compression to build cognitive effective theories for collective behavior.
In the present chapter we study the emergence of global patterns in large groups in first and second-order multi-agent systems, focusing on two ingredients that influence the dynamics: the interaction network and the state space. The state space determines the types of equilibrium that can be reached by the system. Meanwhile, convergence to specific equilibria depends on the connectivity of the interaction network and on the interaction potential. When the system does not satisfy the necessary conditions for convergence to the desired equilibrium, control can be exerted, both on finite-dimensional systems and on their mean-field limit.
This doctoral work focuses on three main problems related to social networks: (1) Orchestrating Network Formation: We consider the problem of orchestrating formation of a social network having a certain given topology that may be desirable for the intended usecases. Assuming the social network nodes to be strategic in forming relationships, we derive conditions under which a given topology can be uniquely obtained. We also study the efficiency and robustness of the derived conditions. (2) Multi-phase Influence Maximization: We propose that information diffusion be carried out in multiple phases rather than in a single instalment. With the objective of achieving better diffusion, we discover optimal ways of splitting the available budget among the phases, determining the time delay between consecutive phases, and also finding the individuals to be targeted for initiating the diffusion process. (3) Scalable Preference Aggregation: It is extremely useful to determine a small number of representatives of a social network such that the individual preferences of these nodes, when aggregated, reflect the aggregate preference of the entire network. Using real-world data collected from Facebook with human subjects, we discover a model that faithfully captures the spread of preferences in a social network. We hence propose fast and reliable ways of computing a truly representative aggregate preference of the entire network. In particular, we develop models and methods for solving the above problems, which primarily deal with formation and analysis of social networks.