Do you want to publish a course? Click here

SERoCS: Safe and Efficient Robot Collaborative Systems for Next Generation Intelligent Industrial Co-Robots

251   0   0.0 ( 0 )
 Added by Changliu Liu
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Human-robot collaborations have been recognized as an essential component for future factories. It remains challenging to properly design the behavior of those co-robots. Those robots operate in dynamic uncertain environment with limited computation capacity. The design objective is to maximize their task efficiency while guaranteeing safety. This paper discusses a set of design principles of a safe and efficient robot collaboration system (SERoCS) for the next generation co-robots, which consists of robust cognition algorithms for environment monitoring, efficient task planning algorithms for reference generations, and safe motion planning and control algorithms for safe human-robot interactions. The proposed SERoCS will address the design challenges and significantly expand the skill sets of the co-robots to allow them to work safely and efficiently with their human counterparts. The development of SERoCS will create a significant advancement toward adoption of co-robots in various industries. The experiments validate the effectiveness of SERoCS.



rate research

Read More

Human-robot interactions have been recognized to be a key element of future industrial collaborative robots (co-robots). Unlike traditional robots that work in structured and deterministic environments, co-robots need to operate in highly unstructured and stochastic environments. To ensure that co-robots operate efficiently and safely in dynamic uncertain environments, this paper introduces the robot safe interaction system. In order to address the uncertainties during human-robot interactions, a unique parallel planning and control architecture is proposed, which has a long term global planner to ensure efficiency of robot behavior, and a short term local planner to ensure real time safety under uncertainties. In order for the robot to respond immediately to environmental changes, fast algorithms are used for real-time computation, i.e., the convex feasible set algorithm for the long term optimization, and the safe set algorithm for the short term optimization. Several test platforms are introduced for safe evaluation of the developed system in the early phase of deployment. The effectiveness and the efficiency of the proposed method have been verified in experiment with an industrial robot manipulator.
The coordinated assurance of interrelated critical properties, such as system safety and cyber-security, is one of the toughest challenges in critical systems engineering. In this chapter, we summarise approaches to the coordinated assurance of safety and security. Then, we highlight the state of the art and recent challenges in human-robot collaboration in manufacturing both from a safety and security perspective. We conclude with a list of procedural and technological issues to be tackled in the coordinated assurance of collaborative industrial robots.
Industrial standards define safety requirements for Human-Robot Collaboration (HRC) in industrial manufacturing. The standards particularly require real-time monitoring and securing of the minimum protective distance between a robot and an operator. In this work, we propose a depth-sensor based model for workspace monitoring and an interactive Augmented Reality (AR) User Interface (UI) for safe HRC. The AR UI is implemented on two different hardware: a projector-mirror setup anda wearable AR gear (HoloLens). We experiment the workspace model and UIs for a realistic diesel motor assembly task. The AR-based interactive UIs provide 21-24% and 57-64% reduction in the task completion and robot idle time, respectively, as compared to a baseline without interaction and workspace sharing. However, subjective evaluations reveal that HoloLens based AR is not yet suitable for industrial manufacturing while the projector-mirror setup shows clear improvements in safety and work ergonomics.
103 - D. Wuthier 2021
The application of robotic solutions to small-batch production is challenging: economical constraints tend to dramatically limit the time for setting up new batches. Organizing robot tasks into modular software components, called skills, and allowing the assignment of multiple concurrent tasks to a single robot is potentially game-changing. However, due to cycle time constraints, it may be necessary for a skill to take over without waiting on another to terminate, and the available literature lacks a systematic approach in this case. In the present article, we fill the gap by (a) establishing the specifications of skills that can be sequenced with partial executions, (b) proposing an implementation based on the combination of finite-state machines and behavior trees, and (c) demonstrating the benefits of such skills through extensive trials in the environment of ARIAC (Agile Robotics for Industrial Automation Competition).
Autonomous or teleoperated robots have been playing increasingly important roles in civil applications in recent years. Across the different civil domains where robots can support human operators, one of the areas where they can have more impact is in search and rescue (SAR) operations. In particular, multi-robot systems have the potential to significantly improve the efficiency of SAR personnel with faster search of victims, initial assessment and mapping of the environment, real-time monitoring and surveillance of SAR operations, or establishing emergency communication networks, among other possibilities. SAR operations encompass a wide variety of environments and situations, and therefore heterogeneous and collaborative multi-robot systems can provide the most advantages. In this paper, we review and analyze the existing approaches to multi-robot SAR support, from an algorithmic perspective and putting an emphasis on the methods enabling collaboration among the robots as well as advanced perception through machine vision and multi-agent active perception. Furthermore, we put these algorithms in the context of the different challenges and constraints that various types of robots (ground, aerial, surface or underwater) encounter in different SAR environments (maritime, urban, wilderness or other post-disaster scenarios). This is, to the best of our knowledge, the first review considering heterogeneous SAR robots across different environments, while giving two complimentary points of view: control mechanisms and machine perception. Based on our review of the state-of-the-art, we discuss the main open research questions, and outline our insights on the current approaches that have potential to improve the real-world performance of multi-robot SAR systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا