Do you want to publish a course? Click here

Profiling lung cancer patients using electronic health records

99   0   0.0 ( 0 )
 Publication date 2018
  fields Biology
and research's language is English




Ask ChatGPT about the research

If Electronic Health Records contain a large amount of information about the patients condition and response to treatment, which can potentially revolutionize the clinical practice, such information is seldom considered due to the complexity of its extraction and analysis. We here report on a first integration of an NLP framework for the analysis of clinical records of lung cancer patients making use of a telephone assistance service of a major Spanish hospital. We specifically show how some relevant data, about patient demographics and health condition, can be extracted; and how some relevant analyses can be performed, aimed at improving the usefulness of the service. We thus demonstrate that the use of EHR texts, and their integration inside a data analysis framework, is technically feasible and worth of further study.



rate research

Read More

Accurate extraction of breast cancer patients phenotypes is important for clinical decision support and clinical research. Current models do not take full advantage of cancer domain-specific corpus, whether pre-training Bidirectional Encoder Representations from Transformer model on cancer-specific corpus could improve the performances of extracting breast cancer phenotypes from texts data remains to be explored. The objective of this study is to develop and evaluate the CancerBERT model for extracting breast cancer phenotypes from clinical texts in electronic health records. This data used in the study included 21,291 breast cancer patients diagnosed from 2010 to 2020, patients clinical notes and pathology reports were collected from the University of Minnesota Clinical Data Repository (UMN). Results: About 3 million clinical notes and pathology reports in electronic health records for 21,291 breast cancer patients were collected to train the CancerBERT model. 200 pathology reports and 50 clinical notes of breast cancer patients that contain 9,685 sentences and 221,356 tokens were manually annotated by two annotators. 20% of the annotated data was used as a test set. Our CancerBERT model achieved the best performance with macro F1 scores equal to 0.876 (95% CI, 0.896-0.902) for exact match and 0.904 (95% CI, 0.896-0.902) for the lenient match. The NER models we developed would facilitate the automated information extraction from clinical texts to further help clinical decision support. Conclusions and Relevance: In this study, we focused on the breast cancer-related concepts extraction from EHR data and obtained a comprehensive annotated dataset that contains 7 types of breast cancer-related concepts. The CancerBERT model with customized vocabulary could significantly improve the performance for extracting breast cancer phenotypes from clinical texts.
205 - Zehao Yu , Xi Yang , Chong Dang 2021
Social and behavioral determinants of health (SBDoH) have important roles in shaping peoples health. In clinical research studies, especially comparative effectiveness studies, failure to adjust for SBDoH factors will potentially cause confounding issues and misclassification errors in either statistical analyses and machine learning-based models. However, there are limited studies to examine SBDoH factors in clinical outcomes due to the lack of structured SBDoH information in current electronic health record (EHR) systems, while much of the SBDoH information is documented in clinical narratives. Natural language processing (NLP) is thus the key technology to extract such information from unstructured clinical text. However, there is not a mature clinical NLP system focusing on SBDoH. In this study, we examined two state-of-the-art transformer-based NLP models, including BERT and RoBERTa, to extract SBDoH concepts from clinical narratives, applied the best performing model to extract SBDoH concepts on a lung cancer screening patient cohort, and examined the difference of SBDoH information between NLP extracted results and structured EHRs (SBDoH information captured in standard vocabularies such as the International Classification of Diseases codes). The experimental results show that the BERT-based NLP model achieved the best strict/lenient F1-score of 0.8791 and 0.8999, respectively. The comparison between NLP extracted SBDoH information and structured EHRs in the lung cancer patient cohort of 864 patients with 161,933 various types of clinical notes showed that much more detailed information about smoking, education, and employment were only captured in clinical narratives and that it is necessary to use both clinical narratives and structured EHRs to construct a more complete picture of patients SBDoH factors.
Electronic Health Records (EHRs) are typically stored as time-stamped encounter records. Observing temporal relationship between medical records is an integral part of interpreting the information. Hence, statistical analysis of EHRs requires that clinically informed time-interdependent analysis variables (TIAV) be created. Often, formulation and creation of these variables are iterative and requiring custom codes. We describe a technique of using sequences of time-referenced entities as the building blocks for TIAVs. These sequences represent different aspects of patients medical history in a contiguous fashion. To illustrate the principles and applications of the method, we provide examples using Veterans Health Administrations research databases. In the first example, sequences representing medication exposure were used to assess patient selection criteria for a treatment comparative effectiveness study. In the second example, sequences of Charlson Comorbidity conditions and clinical settings of inpatient or outpatient were used to create variables with which data anomalies and trends were revealed. The third example demonstrated the creation of an analysis variable derived from the temporal dependency of medication exposure and comorbidity. Complex time-interdependent analysis variables can be created from the sequences with simple, reusable codes, hence enable unscripted or automation of TIAV creation.
Today, despite decades of developments in medicine and the growing interest in precision healthcare, vast majority of diagnoses happen once patients begin to show noticeable signs of illness. Early indication and detection of diseases, however, can provide patients and carers with the chance of early intervention, better disease management, and efficient allocation of healthcare resources. The latest developments in machine learning (more specifically, deep learning) provides a great opportunity to address this unmet need. In this study, we introduce BEHRT: A deep neural sequence transduction model for EHR (electronic health records), capable of multitask prediction and disease trajectory mapping. When trained and evaluated on the data from nearly 1.6 million individuals, BEHRT shows a striking absolute improvement of 8.0-10.8%, in terms of Average Precision Score, compared to the existing state-of-the-art deep EHR models (in terms of average precision, when predicting for the onset of 301 conditions). In addition to its superior prediction power, BEHRT provides a personalised view of disease trajectories through its attention mechanism; its flexible architecture enables it to incorporate multiple heterogeneous concepts (e.g., diagnosis, medication, measurements, and more) to improve the accuracy of its predictions; and its (pre-)training results in disease and patient representations that can help us get a step closer to interpretable predictions.
Objectives: Most cancer data sources lack information on metastatic recurrence. Electronic medical records (EMRs) and population-based cancer registries contain complementary information on cancer treatment and outcomes, yet are rarely used synergistically. To enable detection of metastatic breast cancer (MBC), we applied a semi-supervised machine learning framework to linked EMR-California Cancer Registry (CCR) data. Materials and Methods: We studied 11,459 female patients treated at Stanford Health Care who received an incident breast cancer diagnosis from 2000-2014. The dataset consisted of structured data and unstructured free-text clinical notes from EMR, linked to CCR, a component of the Surveillance, Epidemiology and End Results (SEER) database. We extracted information on metastatic disease from patient notes to infer a class label and then trained a regularized logistic regression model for MBC classification. We evaluated model performance on a gold standard set of set of 146 patients. Results: There are 495 patients with de novo stage IV MBC, 1,374 patients initially diagnosed with Stage 0-III disease had recurrent MBC, and 9,590 had no evidence of metastatis. The median follow-up time is 96.3 months (mean 97.8, standard deviation 46.7). The best-performing model incorporated both EMR and CCR features. The area under the receiver-operating characteristic curve=0.925 [95% confidence interval: 0.880-0.969], sensitivity=0.861, specificity=0.878 and overall accuracy=0.870. Discussion and Conclusion: A framework for MBC case detection combining EMR and CCR data achieved good sensitivity, specificity and discrimination without requiring expert-labeled examples. This approach enables population-based research on how patients die from cancer and may identify novel predictors of cancer recurrence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا