Do you want to publish a course? Click here

Deep Domain Adaptation under Deep Label Scarcity

372   0   0.0 ( 0 )
 Added by Amar Prakash Azad
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The goal behind Domain Adaptation (DA) is to leverage the labeled examples from a source domain so as to infer an accurate model in a target domain where labels are not available or in scarce at the best. A state-of-the-art approach for the DA is due to (Ganin et al. 2016), known as DANN, where they attempt to induce a common representation of source and target domains via adversarial training. This approach requires a large number of labeled examples from the source domain to be able to infer a good model for the target domain. However, in many situations obtaining labels in the source domain is expensive which results in deteriorated performance of DANN and limits its applicability in such scenarios. In this paper, we propose a novel approach to overcome this limitation. In our work, we first establish that DANN reduces the original DA problem into a semi-supervised learning problem over the space of common representation. Next, we propose a learning approach, namely TransDANN, that amalgamates adversarial learning and transductive learning to mitigate the detrimental impact of limited source labels and yields improved performance. Experimental results (both on text and images) show a significant boost in the performance of TransDANN over DANN under such scenarios. We also provide theoretical justification for the performance boost.



rate research

Read More

Deep domain adaptation models learn a neural network in an unlabeled target domain by leveraging the knowledge from a labeled source domain. This can be achieved by learning a domain-invariant feature space. Though the learned representations are separable in the source domain, they usually have a large variance and samples with different class labels tend to overlap in the target domain, which yields suboptimal adaptation performance. To fill the gap, a Fisher loss is proposed to learn discriminative representations which are within-class compact and between-class separable. Experimental results on two benchmark datasets show that the Fisher loss is a general and effective loss for deep domain adaptation. Noticeable improvements are brought when it is used together with widely adopted transfer criteria, including MMD, CORAL and domain adversarial loss. For example, an absolute improvement of 6.67% in terms of the mean accuracy is attained when the Fisher loss is used together with the domain adversarial loss on the Office-Home dataset.
Recently, considerable effort has been devoted to deep domain adaptation in computer vision and machine learning communities. However, most of existing work only concentrates on learning shared feature representation by minimizing the distribution discrepancy across different domains. Due to the fact that all the domain alignment approaches can only reduce, but not remove the domain shift. Target domain samples distributed near the edge of the clusters, or far from their corresponding class centers are easily to be misclassified by the hyperplane learned from the source domain. To alleviate this issue, we propose to joint domain alignment and discriminative feature learning, which could benefit both domain alignment and final classification. Specifically, an instance-based discriminative feature learning method and a center-based discriminative feature learning method are proposed, both of which guarantee the domain invariant features with better intra-class compactness and inter-class separability. Extensive experiments show that learning the discriminative features in the shared feature space can significantly boost the performance of deep domain adaptation methods.
372 - Bhanu Garg , Naresh Manwani 2019
The real-world data is often susceptible to label noise, which might constrict the effectiveness of the existing state of the art algorithms for ordinal regression. Existing works on ordinal regression do not take label noise into account. We propose a theoretically grounded approach for class conditional label noise in ordinal regression problems. We present a deep learning implementation of two commonly used loss functions for ordinal regression that is both - 1) robust to label noise, and 2) rank consistent for a good ranking rule. We verify these properties of the algorithm empirically and show robustness to label noise on real data and rank consistency. To the best of our knowledge, this is the first approach for robust ordinal regression models.
Instrumenting and collecting annotated visual grasping datasets to train modern machine learning algorithms can be extremely time-consuming and expensive. An appealing alternative is to use off-the-shelf simulators to render synthetic data for which ground-truth annotations are generated automatically. Unfortunately, models trained purely on simulated data often fail to generalize to the real world. We study how randomized simulated environments and domain adaptation methods can be extended to train a grasping system to grasp novel objects from raw monocular RGB images. We extensively evaluate our approaches with a total of more than 25,000 physical test grasps, studying a range of simulation conditions and domain adaptation methods, including a novel extension of pixel-level domain adaptation that we term the GraspGAN. We show that, by using synthetic data and domain adaptation, we are able to reduce the number of real-world samples needed to achieve a given level of performance by up to 50 times, using only randomly generated simulated objects. We also show that by using only unlabeled real-world data and our GraspGAN methodology, we obtain real-world grasping performance without any real-world labels that is similar to that achieved with 939,777 labeled real-world samples.
Learning-based approaches to robotic manipulation are limited by the scalability of data collection and accessibility of labels. In this paper, we present a multi-task domain adaptation framework for instance grasping in cluttered scenes by utilizing simulated robot experiments. Our neural network takes monocular RGB images and the instance segmentation mask of a specified target object as inputs, and predicts the probability of successfully grasping the specified object for each candidate motor command. The proposed transfer learning framework trains a model for instance grasping in simulation and uses a domain-adversarial loss to transfer the trained model to real robots using indiscriminate grasping data, which is available both in simulation and the real world. We evaluate our model in real-world robot experiments, comparing it with alternative model architectures as well as an indiscriminate grasping baseline.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا