Ultralong spin lifetimes in one-dimensional semiconductor nanowires


Abstract in English

We experimentally demonstrate ultralong spin lifetimes of electrons in the one-dimensional (1D) quantum limit of semiconductor nanowires. Optically probing single wires of different diameters reveals an increase in the spin relaxation time by orders of magnitude as the electrons become increasingly confined until only a single 1D subband is populated. We find the observed spin lifetimes of more than $200,textrm{ns}$ to result from the robustness of 1D electrons against major spin relaxation mechanisms, highlighting the promising potential of these wires for long-range transport of coherent spin information.

Download