Do you want to publish a course? Click here

Extending the Globular Cluster System-Halo Mass Relation to the Lowest Galaxy Masses

102   0   0.0 ( 0 )
 Added by Duncan Forbes
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

High mass galaxies, with halo masses $M_{200} ge 10^{10} M_{odot}$, reveal a remarkable near-linear relation between their globular cluster (GC) system mass and their host galaxy halo mass. Extending this relation to the mass range of dwarf galaxies has been problematic due to the difficulty in measuring independent halo masses. Here we derive new halo masses based on stellar and HI gas kinematics for a sample of nearby dwarf galaxies with GC systems. We find that the GC system mass--halo mass relation for galaxies populated by GCs holds from halo masses of $M_{200} sim 10^{14} M_{odot}$ down to below $M_{200}$ $sim 10^9 M_{odot}$, although there is a substantial increase in scatter towards low masses. In particular, three well-studied ultra diffuse galaxies, with dwarf-like stellar masses, reveal a wide range in their GC-to-halo mass ratios. We compare our GC system--halo mass relation to the recent model of El Badry et al., finding that their fiducial model does not reproduce our data in the low mass regime. This may suggest that GC formation needs to be more efficient than assumed in their model, or it may be due to the onset of stochastic GC occupation in low mass halos. Finally, we briefly discuss the stellar mass-halo mass relation for our low mass galaxies with GCs, and we suggest some nearby dwarf galaxies for which searches for GCs may be fruitful.



rate research

Read More

Linking globular clusters (GCs) to the assembly of their host galaxies is an overarching goal in GC studies. The inference of tight scaling relations between GC system properties and the mass of both the stellar and dark halo components of their host galaxies are indicative of an intimate physical connection, yet have also raised fundamental questions about how and when GCs form. Specifically, the inferred correlation between the mass of a GC system (Mgc) and the dark matter halo mass (Mhalo) of a galaxy has been posited as a consequence of a causal relation between the formation of dark matter mini-haloes and GC formation during the early epochs of galaxy assembly. We present the first results from a new simulation of a cosmological volume ($L=34.4$~cMpc on a side) from the E-MOSAICS suite, which includes treatments of the formation and evolution of GCs within the framework of a detailed galaxy formation model. The simulated Mgc-Mhalo relation is linear for halo masses $>5times10^{11}~Msun$, and is driven by the hierarchical assembly of galaxies. Below this halo mass, the simulated relation features a downturn, which we show is consistent with observations, and is driven by the underlying stellar mass-halo mass relation of galaxies. Our fiducial model reproduces the observed Mgc-Mstar relation across the full mass range, which we argue is more physically relevant than the Mgc-Mhalo relation. We also explore the physical processes driving the observed constant value of $Mgc / Mhalo sim 5times10^{-5}$ and find that it is the result of a combination of cluster formation physics and cluster disruption.
118 - Till Sawala 2014
The relation between galaxies and dark matter halos is of vital importance for evaluating theoretical predictions of structure formation and galaxy formation physics. We show that the widely used method of abundance matching based on dark matter only simulations fails at the low mass end because two of its underlying assumptions are broken: only a small fraction of low mass (below 10^9.5 solar masses) halos host a visible galaxy, and halos grow at a lower rate due to the effect of baryons. In this regime, reliance on dark matter only simulations for abundance matching is neither accurate nor self-consistent. We find that the reported discrepancy between observational estimates of the halo masses of dwarf galaxies and the values predicted by abundance matching does not point to a failure of LCDM, but simply to a failure to account for baryonic effects. Our results also imply that the Local Group contains only a few hundred observable galaxies in contrast with the thousands of faint dwarfs that abundance matching would suggest. We show how relations derived from abundance matching can be corrected, so that they can be used self-consistently to calibrate models of galaxy formation.
We present evidence for mass segregation in the outer-halo globular cluster Palomar 14, which is intuitively unexpected since its present-day two-body relaxation time significantly exceeds the Hubble time. Based on archival Hubble Space Telescope imaging, we analyze the radial dependence of the stellar mass function in the clusters inner 39.2 pc in the mass range of 0.53-0.80 M_sun, ranging from the main-sequence turn-off down to a V-band magnitude of 27.1 mag. The mass function at different radii is well approximated by a power law and rises from a shallow slope of 0.6+/-0.2 in the clusters core to a slope of 1.6+/-0.3 beyond 18.6 pc. This is seemingly in conflict with the finding by Beccari et al. (2011), who interpret the clusters non-segregated population of (more massive) blue straggler stars, compared to (less massive) red giants and horizontal branch stars, as evidence that the cluster has not experienced dynamical segregation yet. We discuss how both results can be reconciled. Our findings indicate that the cluster was either primordially mass-segregated and/or used to be significantly more compact in the past. For the latter case, we propose tidal shocks as the mechanism driving the clusters expansion, which would imply that Palomar 14 is on a highly eccentric orbit. Conversely, if the cluster formed already extended and with primordial mass segregation, this could support an accretion origin of the cluster.
143 - James Aird , Alison L. Coil 2020
It is widely reported, based on clustering measurements of observed active galactic nuclei (AGN) samples, that AGN reside in similar mass host dark matter halos across the bulk of cosmic time, with log $M/M_odot$~12.5-13.0 to z~2.5. We show that this is due in part to the AGN fraction in galaxies rising with increasing stellar mass, combined with AGN observational selection effects that exacerbate this trend. Here, we use AGN specific accretion rate distribution functions determined as a function of stellar mass and redshift for star-forming and quiescent galaxies separately, combined with the latest galaxy-halo connection models, to determine the parent and sub-halo mass distribution function of AGN to various observational limits. We find that while the median (sub-)halo mass of AGN, $approx10^{12}M_odot$, is fairly constant with luminosity, specific accretion rate, and redshift, the full halo mass distribution function is broad, spanning several orders of magnitude. We show that widely used methods to infer a typical dark matter halo mass based on an observed AGN clustering amplitude can result in biased, systematically high host halo masses. While the AGN satellite fraction rises with increasing parent halo mass, we find that the central galaxy is often not an AGN. Our results elucidate the physical causes for the apparent uniformity of AGN host halos across cosmic time and underscore the importance of accounting for AGN selection biases when interpreting observational AGN clustering results. We further show that AGN clustering is most easily interpreted in terms of the relative bias to galaxy samples, not from absolute bias measurements alone.
We obtained precise line-of-sight radial velocities of 23 member stars of the remote halo globular cluster Palomar 4 (Pal 4) using the High Resolution Echelle Spectrograph (HIRES) at the Keck I telescope. We also measured the mass function of the cluster down to a limiting magnitude of V~28 mag using archival HST/WFPC2 imaging. We derived the clusters surface brightness profile based on the WFPC2 data and on broad-band imaging with the Low-Resolution Imaging Spectrometer (LRIS) at the Keck II telescope. We find a mean cluster velocity of 72.55+/-0.22 km/s and a velocity dispersion of 0.87+/-0.18 km/s. The global mass function of the cluster, in the mass range 0.55<=M<=0.85 M_solar, is shallower than a Kroupa mass function and the cluster is significantly depleted in low-mass stars in its center compared to its outskirts. Since the relaxation time of Pal 4 is of the order of a Hubble time, this points to primordial mass segregation in this cluster. Extrapolating the measured mass function towards lower-mass stars and including the contribution of compact remnants, we derive a total cluster mass of 29800 M_solar. For this mass, the measured velocity dispersion is consistent with the expectations of Newtonian dynamics and below the prediction of Modified Newtonian Dynamics (MOND). Pal 4 adds to the growing body of evidence that the dynamics of star clusters in the outer Galactic halo can hardly be explained by MOND.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا