Do you want to publish a course? Click here

Slow-then-rapid quenching as traced by tentative evidence for enhanced metallicities of cluster galaxies at z~0.2 in the slow quenching phase

84   0   0.0 ( 0 )
 Added by Christian Maier
 Publication date 2018
  fields Physics
and research's language is English
 Authors C. Maier




Ask ChatGPT about the research

(Abridged) We explore 7 clusters from LoCuSS at z~0.2 with spectra of 1965 cluster members from the ACReS Hectospec survey covering a region which corresponds to about three virial radii for each cluster. We measure fluxes of five emission lines of cluster members enabling us to unambiguously derive O/H gas metallicities, and also SFRs from extinction corrected Halpha fluxes. We compare our cluster galaxy sample with a field sample of 705 galaxies at similar redshifts observed with Hectospec. We find that star-forming cluster and field galaxies show similar median specific SFRs in a given mass bin, but their O/H values are displaced to higher values at projected radii of R<R200 compared with galaxies at larger radii and in the field. The comparison with metallicity-SFR-mass model predictions with inflowing gas indicates a slow-quenching scenario in which strangulation is initiated when galaxies pass R~R200 by stopping the inflow of gas. The metallicities of cluster members inside R200 are thereby increasing, but their SFRs are hardly affected for a period of time, because these galaxies consume available disk gas. We use the fraction of star-forming cluster galaxies as a function of clustercentric radius compared to predictions from the Millennium simulation to constrain quenching timescales to be 1-2Gyrs. This is consistent with a slow-then-rapid quenching scenario. Slow quenching (strangulation) starts when the gas inflow is stopped when the galaxy passes R200 with a phase in which cluster galaxies are still star-forming, but they show elevated metallicities tracing the ongoing quenching. This phase lasts for 1-2Gyrs, meanwhile the galaxies travel to denser inner regions of the cluster, and is followed by a rapid phase: a rapid complete quenching of star formation due to the increasing ram-pressure towards the cluster center which can also strip the cold gas in massive galaxies.



rate research

Read More

163 - C. Maier 2019
(Abridged) We explore the massive cluster XMMXCSJ2215.9-1738 at z~1.5 with KMOS spectroscopy of Halpha and [NII] covering a region that corresponds to about one virial radius. Using published spectroscopic redshifts of 108 galaxies in and around the cluster we computed the location of galaxies in the projected velocity vs. position phase-space to separate our cluster sample into a virialized region of objects accreted longer ago (roughly inside half R200) and a region of infalling galaxies. We measured oxygen abundances for ten cluster galaxies with detected [NII] lines in the individual galaxy spectra and compared the MZR of the galaxies inside half R200 with the infalling galaxies and a field sample at similar redshifts. We find that the oxygen abundances of individual z~1.5 star-forming cluster galaxies inside half R200 are comparable, at the respective stellar mass, to the higher local SDSS metallicity values. We find that the [NII]/Halpha line ratios inside half R200 are higher by 0.2 dex and that the resultant metallicities of the galaxies in the inner part of the cluster are higher by about 0.1 dex, at a given mass, than the metallicities of infalling galaxies and of field galaxies at z~1.5. The enhanced metallicities of cluster galaxies at z~1.5 inside half R200 indicate that the density of the ICM in this massive cluster becomes high enough toward the cluster center such that the ram pressure exceeds the restoring pressure of the hot gas reservoir of cluster galaxies. This can remove the gas reservoir initiating quenching; although the galaxies continue to form stars, albeit at slightly lower rates, using the available cold gas in the disk which is not stripped.
We investigate the stellar populations for a sample of 161 massive, mainly quiescent galaxies at $langle z_{rm obs} rangle=0.8$ with deep Keck/DEIMOS rest-frame optical spectroscopy (HALO7D survey). With the fully Bayesian framework Prospector, we simultaneously fit the spectroscopic and photometric data with an advanced physical model (including non-parametric star-formation histories, emission lines, variable dust attenuation law, and dust and AGN emission) together with an uncertainty and outlier model. We show that both spectroscopy and photometry are needed to break the dust-age-metallicity degeneracy. We find a large diversity of star-formation histories: although the most massive ($M_{star}>2times10^{11}~M_{odot}$) galaxies formed the earliest (formation redshift of $z_{rm f}approx5-10$ with a short star-formation timescale of $tau_{rm SF}lesssim1~mathrm{Gyr}$), lower-mass galaxies have a wide range of formation redshifts, leading to only a weak trend of $z_{rm f}$ with $M_{star}$. Interestingly, several low-mass galaxies with have formation redshifts of $z_{rm f}approx5-8$. Star-forming galaxies evolve about the star-forming main sequence, crossing the ridgeline several times in their past. Quiescent galaxies show a wide range and continuous distribution of quenching timescales ($tau_{rm quench}approx0-5~mathrm{Gyr}$) with a median of $langletau_{rm quench}rangle=1.0_{-0.9}^{+0.8}~mathrm{Gyr}$ and of quenching epochs of $z_{rm quench}approx0.8-5.0$ ($langle z_{rm quench}rangle=1.3_{-0.4}^{+0.7}$). This large diversity of quenching timescales and epochs points toward a combination of internal and external quenching mechanisms. In our sample, rejuvenation and late bloomers are uncommon. In summary, our analysis supports the grow & quench framework and is consistent with a wide and continuously-populated diversity of quenching timescales.
We present a study of the spatial distribution and kinematics of star-forming galaxies in 30 massive clusters at 0.15<z<0.30, combining wide-field Spitzer 24um and GALEX NUV imaging with highly-complete spectroscopy of cluster members. The fraction (f_SF) of star-forming cluster galaxies rises steadily with cluster-centric radius, increasing fivefold by 2r200, but remains well below field values even at 3r200. This suppression of star formation at large radii cannot be reproduced by models in which star formation is quenched in infalling field galaxies only once they pass within r200 of the cluster, but is consistent with some of them being first pre-processed within galaxy groups. Despite the increasing f_SF-radius trend, the surface density of star-forming galaxies actually declines steadily with radius, falling ~15x from the core to 2r200. This requires star-formation to survive within recently accreted spirals for 2--3Gyr to build up the apparent over-density of star-forming galaxies within clusters. The velocity dispersion profile of the star-forming galaxy population shows a sharp peak of 1.44-sigma_v at 0.3r500, and is 10--35% higher than that of the inactive cluster members at all cluster-centric radii, while their velocity distribution shows a flat, top-hat profile within r500. All of these results are consistent with star-forming cluster galaxies being an infalling population, but one that must also survive ~0.5--2Gyr beyond passing within r200. By comparing the observed distribution of star-forming galaxies in the stacked caustic diagram with predictions from the Millennium simulation, we obtain a best-fit model in which SFRs decline exponentially on quenching time-scales of 1.73pm0.25 Gyr upon accretion into the cluster.
We investigate the connection between X-ray and radio-loud AGNs and the physical properties of their evolved and massive host galaxies, focussing on the mass-related quenching channel followed by $mathcal{M}^star (simeq 10^{10.6} M_odot)$ galaxies in the rest-frame NUVrK colour diagram at $0.2 < z < 0.5$. While our results confirm that (1) radio-loud AGNs are predominantly hosted by already-quenched and very massive ($M_*>10^{11}M_odot$) galaxies, ruling out their feedback as a primary driver of $mathcal{M}^star$ galaxy quenching, we found that (2) X-ray AGNs affected by heavy obscuration of their soft X-ray emission are mostly hosted by $mathcal{M}^star$ galaxies that are in the process of quenching. This is consistent with a quenching scenario that involves mergers of (gas-poor) $mathcal{M}^star$ galaxies $after$ the onset of the quenching process, i.e., a scenario where $mathcal{M}^star$ galaxy mergers are not the cause but rather an aftermath of the quenching mechanism(s). In that respect, we discuss how our results may support a picture where the slow quenching of $mathcal{M}^star$ galaxies happens due to halo-halo mergers along cosmic filaments.
We present the stellar mass functions (SMFs) of passive and star-forming galaxies with a limiting mass of 10$^{10.1}$ M$_{odot}$ in four spectroscopically confirmed Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS) galaxy clusters at 1.37 $<$ z $<$ 1.63. The clusters have 113 spectroscopically confirmed members combined, with 8-45 confirmed members each. We construct $Ks$-band-selected photometric catalogs for each cluster with an average of 11 photometric bands ranging from $u$ to 8 $mu$m. We compare our cluster galaxies to a field sample derived from a similar $Ks$-band-selected catalog in the UltraVISTA/COSMOS field. The SMFs resemble those of the field, but with signs of environmental quenching. We find that 30 $pm$ 20% of galaxies that would normally be forming stars in the field are quenched in the clusters. The environmental quenching efficiency shows little dependence on projected cluster-centric distance out to $sim$ 4 Mpc, providing tentative evidence of pre-processing and/or galactic conformity in this redshift range. We also compile the available data on environmental quenching efficiencies from the literature, and find that the quenching efficiency in clusters and in groups appears to decline with increasing redshift in a manner consistent with previous results and expectations based on halo mass growth.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا