Do you want to publish a course? Click here

Photon-antibunching in the fluorescence of statistical ensembles of emitters at an optical nanofiber-tip

48   0   0.0 ( 0 )
 Added by Sebastian Slama
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

This proposal investigates the photon-statistics of light emitted by a statistical ensemble of cold atoms excited by the near-field of an optical nanofiber tip. Dipole-dipole interactions of atoms at such short distance from each other suppress the simultaneous emission of more than one photon and lead to antibunching of photons. We consider a mean atom number on the order of one and deal with a poissonian mixture of one and two atoms including dipole-dipole interactions and collective decay. Time tracks of the atomic states are simulated in quantum Monte Carlo simulations from which the $g^{(2)}$-photon autocorrelation function is derived. The general results can be applied to any statistical ensemble of emitters that are interacting by dipole-dipole interactions.



rate research

Read More

In this work we experimentally demonstrate for the first time a recently proposed criterion adressed to detect nonclassical behavior in the fluorescence emission of ensembles of single-photon emitters. In particular, we apply the method to study clusters of NV centres in diamond observed via single-photon-sensitive confocal microscopy. Theoretical considerations on the behavior of the parameter at any arbitrary order in presence of poissonian noise are presented and, finally, the opportunity of detecting manifold coincidences is discussed.
Epitaxial quantum dots have emerged as one of the best single-photon sources, not only for applications in photonic quantum technologies but also for testing fundamental properties of quantum optics. One intriguing observation in this area is the scattering of photons with subnatural linewidth from a two-level system under resonant continuous wave excitation. In particular, an open question is whether these subnatural linewidth photons exhibit simultaneously antibunching as an evidence of single-photon emission. Here, we demonstrate that this simultaneous observation of subnatural linewidth and antibunching is not possible with simple resonant excitation. First, we independently confirm single-photon character and subnatural linewidth by demonstrating antibunching in a Hanbury Brown and Twiss type setup and using high-resolution spectroscopy, respectively. However, when filtering the coherently scattered photons with filter bandwidths on the order of the homogeneous linewidth of the excited state of the two-level system, the antibunching dip vanishes in the correlation measurement. Our experimental work is consistent with recent theoretical findings, that explain antibunching from photon-interferences between the coherent scattering and a weak incoherent signal in a skewed squeezed state.
We propose a novel platform for the investigation of quantum wave packet dynamics, offering a complementary approach to existing theoretical models and experimental systems. It relies on laser-cooled neutral atoms which orbit around an optical nanofiber in an optical potential produced by a red-detuned guided light field. We show that the atomic center-of-mass motion exhibits genuine quantum effects like collapse and revival of the atomic wave packet. As distinctive advantages, our approach features a tunable dispersion relation as well as straightforward readout for the wave packet dynamics and can be implemented using existing quantum optics techniques.
We calculate analytically and numerically the axial orbital and spin torques of guided light on a two-level atom near an optical nanofiber. We show that the generation of these torques is governed by the angular momentum conservation law in the Minkowski formulation. The orbital torque on the atom near the fiber has a contribution from the average recoil of spontaneously emitted photons. Photon angular momentum and atomic spin angular momentum can be converted into atomic orbital angular momentum. The orbital and spin angular momenta of the guided field are not transferred separately to the orbital and spin angular momenta of the atom.
We study the modification of the atomic spontaneous emission rate, i.e. Purcell effect, of $^{87}$Rb in the vicinity of an optical nanofiber ($sim$500 nm diameter). We observe enhancement and inhibition of the atomic decay rate depending on the alignment of the induced atomic dipole relative to the nanofiber. Finite-difference time-domain simulations are in quantitative agreement with the measurements when considering the atoms as simple oscillating linear dipoles. This is surprising since the multi-level nature of the atoms should produce a different radiation pattern, predicting smaller modification of the lifetime than the measured ones. This work is a step towards characterizing and controlling atomic properties near optical waveguides, fundamental tools for the development of quantum photonics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا