Do you want to publish a course? Click here

Absorbed dose evaluation of Auger electron-emitting radionuclides: impact of input decay spectra on dose point kernels and S-values

59   0   0.0 ( 0 )
 Added by Boon Quan Lee
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The aim of this study was to investigate the impact of decay data provided by the newly developed stochastic atomic relaxation model BrIccEmis on dose point kernels (DPKs - radial dose distribution around a unit point source) and S-values (absorbed dose per unit cumulated activity) of 14 Auger electron (AE) emitting radionuclides, namely 67Ga, 80mBr, 89Zr, 90Nb, 99mTc, 111In, 117mSn, 119Sb, 123I, 124I, 125I, 135La, 195mPt and 201Tl. Radiation spectra were based on the nuclear decay data from the medical internal radiation dose (MIRD) RADTABS program and the BrIccEmis code, assuming both an isolated-atom and condensed-phase approach. DPKs were simulated with the PENELOPE Monte Carlo (MC) code using event-by-event electron and photon transport. S-values for concentric spherical cells of various sizes were derived from these DPKS using appropriate geometric reduction factors. The number of Auger and Coster-Kronig (CK) electrons and x-ray photons released per nuclear decay (yield) from MIRD-RADTABS were consistently higher than those calculated using BrIccEmis. DPKs for the electron spectra from BrIccEmis were considerably different from MIRD-RADTABS in the first few hundred nanometres from a point source where most of the Auger electrons are stopped. S-values were, however, not significantly impacted as the differences in DPKS in the sub-micrometre dimension were quickly diminished in larger dimensions. Overestimation in the total AE energy output by MIRD-RADTABS leads to higher predicted energy deposition by AE emitting radionuclides, especially in the immediate vicinity of the decaying radionuclides. This should be taken into account when MIRD-RADTABS data are used to simulate biological damage at nanoscale dimensions.



rate research

Read More

68 - S. Safai 2018
This paper focuses on some dosimetry aspects of proton therapy and pencil beam scanning based on the experience accumulated at Paul Scherrer Institute(PSI). The basic formalism for absolute dosimetry in proton therapy is outlined and the two main techniques and equipment to perform the primary beam monitor chamber calibration are presented. Depth-dose curve and lateral beam width measurements are exposed and discussed in detail, with particular attention to the size of the ionization chamber and the characteristic of scintillating-CCD dosimetry systems, respectively. It is also explained how the angular-spatial distribution of individual pencil beams can be determined in practice. The equipment and the techniques for performing regularmachine-specific quality checks are focused on (i)output constancy checks, (ii)pencil beam position and size checks and (iii)beam energy checks. Finally, patient-specific verification is addressed.
This work studies the impact of systematic uncertainties associated to interaction cross sections on depth dose curves determined by Monte Carlo simulations. The corresponding sensitivity factors are quantified by changing cross sections in a given amount and determining the variation in the dose. The influence of total cross sections for all particles, photons and only for Compton scattering is addressed. The PENELOPE code was used in all simulations. It was found that photon cross section sensitivity factors depend on depth. In addition, they are positive and negative for depths below and above an equilibrium depth, respectively. At this depth, sensitivity factors are null. The equilibrium depths found in this work agree very well with the mean free path of the corresponding incident photon energy. Using the sensitivity factors reported here, it is possible to estimate the impact of photon cross section uncertainties on the uncertainty of Monte Carlo-determined depth dose curves.
145 - Hao Yan , Laura Cervino , Xun Jia 2011
While compressed sensing (CS) based reconstructions have been developed for low-dose CBCT, a clear understanding on the relationship between the image quality and imaging dose at low dose levels is needed. In this paper, we qualitatively investigate this subject in a comprehensive manner with extensive experimental and simulation studies. The basic idea is to plot image quality and imaging dose together as functions of number of projections and mAs per projection over the whole clinically relevant range. A clear understanding on the tradeoff between image quality and dose can be achieved and optimal low-dose CBCT scan protocols can be developed for various imaging tasks in IGRT. Main findings of this work include: 1) Under the CS framework, image quality has little degradation over a large dose range, and the degradation becomes evident when the dose < 100 total mAs. A dose < 40 total mAs leads to a dramatic image degradation. Optimal low-dose CBCT scan protocols likely fall in the dose range of 40-100 total mAs, depending on the specific IGRT applications. 2) Among different scan protocols at a constant low-dose level, the super sparse-view reconstruction with projection number less than 50 is the most challenging case, even with strong regularization. Better image quality can be acquired with other low mAs protocols. 3) The optimal scan protocol is the combination of a medium number of projections and a medium level of mAs/view. This is more evident when the dose is around 72.8 total mAs or below and when the ROI is a low-contrast or high-resolution object. Based on our results, the optimal number of projections is around 90 to 120. 4) The clinically acceptable lowest dose level is task dependent. In our study, 72.8mAs is a safe dose level for visualizing low-contrast objects, while 12.2 total mAs is sufficient for detecting high-contrast objects of diameter greater than 3 mm.
A new variant of the pencil-beam (PB) algorithm for dose distribution calculation for radiotherapy with protons and heavier ions, the grid-dose spreading (GDS) algorithm, is proposed. The GDS algorithm is intrinsically faster than conventional PB algorithms due to approximations in convolution integral, where physical calculations are decoupled from simple grid-to-grid energy transfer. It was effortlessly implemented to a carbon-ion radiotherapy treatment planning system to enable realistic beam blurring in the field, which was absent with the broad-beam (BB) algorithm. For a typical prostate treatment, the slowing factor of the GDS algorithm relative to the BB algorithm was 1.4, which is a great improvement over the conventional PB algorithms with a typical slowing factor of several tens. The GDS algorithm is mathematically equivalent to the PB algorithm for horizontal and vertical coplanar beams commonly used in carbon-ion radiotherapy while dose deformation within the size of the pristine spread occurs for angled beams, which was within 3 mm for a single proton pencil beam of $30^circ$ incidence, and needs to be assessed against the clinical requirements and tolerances in practical situations.
Introduction: Treating pregnant women in the radiotherapy clinic is a rare occurrence. When it does occur, it is vital that the dose received by the developing embryo or foetus is understood as fully as possible. This study presents the first investigation of foetal doses delivered during helical tomotherapy treatments. Materials & Methods: Six treatment plans were delivered to an anthropomorphic phantom using a tomotherapy machine. These included treatments of the brain, unilateral and bilateral head-and-neck, chest wall, and upper lung. Measurements of foetal dose were made with an ionisation chamber positioned at various locations longitudinally within the phantom to simulate a variety of patient anatomies. Results: All measurements were below the established limit of 100 mGy for a high risk of damage during the first trimester. The largest dose encountered was 75 mGy (0.125% of prescription dose). The majority of treatments with measurement positions less than 30 cm fell into the range of uncertain risk (50 - 100 mGy). All treatments with measurement positions beyond 30 cm fell into the low risk category (< 50 mGy). Conclusions: For the cases in this study, tomotherapy resulted in foetal doses that are at least on par with, if not significantly lower than, similar 3D conformal or intensity-modulated treatments delivered with other devices. Recommendations were also provided for estimating foetal doses from tomotherapy plans.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا