No Arabic abstract
Permutation invariant Gaussian matrix models were recently developed for applications in computational linguistics. A 5-parameter family of models was solved. In this paper, we use a representation theoretic approach to solve the general 13-parameter Gaussian model, which can be viewed as a zero-dimensional quantum field theory. We express the two linear and eleven quadratic terms in the action in terms of representation theoretic parameters. These parameters are coefficients of simple quadratic expressions in terms of appropriate linear combinations of the matrix variables transforming in specific irreducible representations of the symmetric group $S_D$ where $D$ is the size of the matrices. They allow the identification of constraints which ensure a convergent Gaussian measure and well-defined expectation values for polynomial functions of the random matrix at all orders. A graph-theoretic interpretation is known to allow the enumeration of permutation invariants of matrices at linear, quadratic and higher orders. We express the expectation values of all the quadratic graph-basis invariants and a selection of cubic and quartic invariants in terms of the representation theoretic parameters of the model.
Constructions in type-driven compositional distributional semantics associate large collections of matrices of size $D$ to linguistic corpora. We develop the proposal of analysing the statistical characteristics of this data in the framework of permutation invariant matrix models. The observables in this framework are permutation invariant polynomial functions of the matrix entries, which correspond to directed graphs. Using the general 13-parameter permutation invariant Gaussian matrix models recently solved, we find, using a dataset of matrices constructed via standard techniques in distributional semantics, that the expectation values of a large class of cubic and quartic observables show high gaussianity at levels between 90 to 99 percent. Beyond expectation values, which are averages over words, the dataset allows the computation of standard deviations for each observable, which can be viewed as a measure of typicality for each observable. There is a wide range of magnitudes in the measures of typicality. The permutation invariant matrix models, considered as functions of random couplings, give a very good prediction of the magnitude of the typicality for different observables. We find evidence that observables with similar matrix model characteristics of Gaussianity and typicality also have high degrees of correlation between the ranked lists of words associated to these observables.
We calculate the expectation value of an arbitrary product of characteristic polynomials of complex random matrices and their hermitian conjugates. Using the technique of orthogonal polynomials in the complex plane our result can be written in terms of a determinant containing these polynomials and their kernel. It generalizes the known expression for hermitian matrices and it also provides a generalization of the Christoffel formula to the complex plane. The derivation we present holds for complex matrix models with a general weight function at finite-N, where N is the size of the matrix. We give some explicit examples at finite-N for specific weight functions. The characteristic polynomials in the large-N limit at weak and strong non-hermiticity follow easily and they are universal in the weak limit. We also comment on the issue of the BMN large-N limit.
We study orbifolds by permutations of two identical N=2 minimal models within the Gepner construction of four dimensional heterotic strings. This is done using the new N=2 supersymmetric permutation orbifold building blocks we have recently developed. We compare our results with the old method of modding out the full string partition function. The overlap between these two approaches is surprisingly small, but whenever a comparison can be made we find complete agreement. The use of permutation building blocks allows us to use the complete arsenal of simple current techniques that is available for standard Gepner models, vastly extending what could previously be done for permutation orbifolds. In particular, we consider (0,2) models, breaking of SO(10) to subgroups, weight-lifting for the minimal models and B-L lifting. Some previously observed phenomena, for example concerning family number quantization, extend to this new class as well, and in the lifted models three family models occur with abundance comparable to two or four.
In this paper we apply the previously derived formalism of permutation orbifold conformal field theories to N=2 supersymmetric minimal models. By interchanging extensions and permutations of the factors we find a very interesting structure relating various conformal field theories that seems not to be known in literature. Moreover, unexpected exceptional simple currents arise in the extended permuted models, coming from off-diagonal fields. In a few situations they admit fixed points that must be resolved. We determine the complete CFT data with all fixed point resolution matrices for all simple currents of all Z_2-permutations orbifolds of all minimal N=2 models with k eq 2 mod 4.
In this short note we construct the DLCQ description of the flux seven-branes in type IIA string theory and discuss its basic properties. The matrix model involves dipole fields. We explain the relation of this nonlocal matrix model to various orbifolds. We also give a spacetime interpretation of the Seiberg-Witten-like map, proposed in a different context first by Bergman and Ganor, that converts this matrix model to a local, highly nonlinear theory.