No Arabic abstract
We prove the superhedging duality for a discrete-time financial market with proportional transaction costs under model uncertainty. Frictions are modeled through solvency cones as in the original model of [Kabanov, Y., Hedging and liquidation under transaction costs in currency markets. Fin. Stoch., 3(2):237-248, 1999] adapted to the quasi-sure setup of [Bouchard, B. and Nutz, M., Arbitrage and duality in nondominated discrete-time models. Ann. Appl. Probab., 25(2):823-859, 2015]. Our approach allows to remove the restrictive assumption of No Arbitrage of the Second Kind considered in [Bouchard, B., Deng, S. and Tan, X., Super-replication with proportional transaction cost under model uncertainty, Math. Fin., 29(3):837-860, 2019] and to show the duality under the more natural condition of No Strict Arbitrage. In addition, we extend the results to models with portfolio constraints.
In a model free discrete time financial market, we prove the superhedging duality theorem, where trading is allowed with dynamic and semi-static strategies. We also show that the initial cost of the cheapest portfolio that dominates a contingent claim on every possible path $omega in Omega$, might be strictly greater than the upper bound of the no-arbitrage prices. We therefore characterize the subset of trajectories on which this duality gap disappears and prove that it is an analytic set.
In a discrete-time financial market, a generalized duality is established for model-free superhedging, given marginal distributions of the underlying asset. Contrary to prior studies, we do not require contingent claims to be upper semicontinuous, allowing for upper semi-analytic ones. The generalized duality stipulates an extended version of risk-neutral pricing. To compute the model-free superhedging price, one needs to find the supremum of expected values of a contingent claim, evaluated not directly under martingale (risk-neutral) measures, but along sequences of measures that converge, in an appropriate sense, to martingale ones. To derive the main result, we first establish a portfolio-constrained duality for upper semi-analytic contingent claims, relying on Choquets capacitability theorem. As we gradually fade out the portfolio constraint, the generalized duality emerges through delicate probabilistic estimations.
We study the explosion of the solutions of the SDE in the quasi-Gaussian HJM model with a CEV-type volatility. The quasi-Gaussian HJM models are a popular approach for modeling the dynamics of the yield curve. This is due to their low dimensional Markovian representation which simplifies their numerical implementation and simulation. We show rigorously that the short rate in these models explodes in finite time with positive probability, under certain assumptions for the model parameters, and that the explosion occurs in finite time with probability one under some stronger assumptions. We discuss the implications of these results for the pricing of the zero coupon bonds and Eurodollar futures under this model.
Quasi-Gaussian HJM models are a popular approach for modeling the dynamics of the yield curve. This is due to their low dimensional Markovian representation, which greatly simplifies their numerical implementation. We present a qualitative study of the solutions of the quasi-Gaussian log-normal HJM model. Using a small-noise deterministic limit we show that the short rate may explode to infinity in finite time. This implies the explosion of the Eurodollar futures prices in this model. We derive explicit explosion criteria under mild assumptions on the shape of the yield curve.
We introduce and study the notion of sure profit via flash strategy, consisting of a high-frequency limit of buy-and-hold trading strategies. In a fully general setting, without imposing any semimartingale restriction, we prove that there are no sure profits via flash strategies if and only if asset prices do not exhibit predictable jumps. This result relies on the general theory of processes and provides the most general formulation of the well-known fact that, in an arbitrage-free financial market, asset prices (including dividends) should not exhibit jumps of a predictable direction or magnitude at predictable times. We furthermore show that any price process is always right-continuous in the absence of sure profits. Our results are robust under small transaction costs and imply that, under minimal assumptions, price changes occurring at scheduled dates should only be due to unanticipated information releases.