No Arabic abstract
Reliable models of the thermodynamic properties of materials are critical for industrially relevant applications that require a good understanding of equilibrium phase diagrams, thermal and chemical transport, and microstructure evolution. The goal of thermodynamic models is to capture data from both experimental and computational studies and then make reliable predictions when extrapolating to new regions of parameter space. These predictions will be impacted by artifacts present in real data sets such as outliers, systematics errors and unreliable or missing uncertainty bounds. Such issues increase the probability of the thermodynamic model producing erroneous predictions. We present a Bayesian framework for the selection, calibration and quantification of uncertainty of thermodynamic property models. The modular framework addresses numerous concerns regarding thermodynamic models including thermodynamic consistency, robustness to outliers and systematic errors by the use of hyperparameter weightings and robust Likelihood and Prior distribution choices. Furthermore, the frameworks inherent transparency (e.g. our choice of probability functions and associated parameters) enables insights into the complex process of thermodynamic assessment. We introduce these concepts through examples where the true property model is known. In addition, we demonstrate the utility of the framework through the creation of a property model from a large set of experimental specific heat and enthalpy measurements of Hafnium metal from 0 to 4900K.
This work affords new insights into Bayesian CART in the context of structured wavelet shrinkage. The main thrust is to develop a formal inferential framework for Bayesian tree-based regression. We reframe Bayesian CART as a g-type prior which departs from the typical wavelet product priors by harnessing correlation induced by the tree topology. The practically used Bayesian CART priors are shown to attain adaptive near rate-minimax posterior concentration in the supremum norm in regression models. For the fundamental goal of uncertainty quantification, we construct adaptive confidence bands for the regression function with uniform coverage under self-similarity. In addition, we show that tree-posteriors enable optimal inference in the form of efficient confidence sets for smooth functionals of the regression function.
Bayesian optimization is a class of global optimization techniques. It regards the underlying objective function as a realization of a Gaussian process. Although the outputs of Bayesian optimization are random according to the Gaussian process assumption, quantification of this uncertainty is rarely studied in the literature. In this work, we propose a novel approach to assess the output uncertainty of Bayesian optimization algorithms, in terms of constructing confidence regions of the maximum point or value of the objective function. These regions can be computed efficiently, and their confidence levels are guaranteed by newly developed uniform error bounds for sequential Gaussian process regression. Our theory provides a unified uncertainty quantification framework for all existing sequential sampling policies and stopping criteria.
Within a Bayesian statistical framework using the standard Skyrme-Hartree-Fcok model, the maximum a posteriori (MAP) values and uncertainties of nuclear matter incompressibility and isovector interaction parameters are inferred from the experimental data of giant resonances and neutron-skin thicknesses of typical heavy nuclei. With the uncertainties of the isovector interaction parameters constrained by the data of the isovector giant dipole resonance and the neutron-skin thickness, we have obtained $K_0 = 223_{-8}^{+7}$ MeV at 68% confidence level using the data of the isoscalar giant monopole resonance in $^{208}$Pb measured at the Research Center for Nuclear Physics (RCNP), Japan, and at the Texas A&M University (TAMU), USA. Although the corresponding $^{120}$Sn data gives a MAP value for $K_0$ about 5 MeV smaller than the $^{208}$Pb data, there are significant overlaps in their posterior probability distribution functions.
Bayesian Neural Networks (BNNs) place priors over the parameters in a neural network. Inference in BNNs, however, is difficult; all inference methods for BNNs are approximate. In this work, we empirically compare the quality of predictive uncertainty estimates for 10 common inference methods on both regression and classification tasks. Our experiments demonstrate that commonly used metrics (e.g. test log-likelihood) can be misleading. Our experiments also indicate that inference innovations designed to capture structure in the posterior do not necessarily produce high quality posterior approximations.
Obtaining accurate estimates of machine learning model uncertainties on newly predicted data is essential for understanding the accuracy of the model and whether its predictions can be trusted. A common approach to such uncertainty quantification is to estimate the variance from an ensemble of models, which are often generated by the generally applicable bootstrap method. In this work, we demonstrate that the direct bootstrap ensemble standard deviation is not an accurate estimate of uncertainty and propose a calibration method to dramatically improve its accuracy. We demonstrate the effectiveness of this calibration method for both synthetic data and physical datasets from the field of Materials Science and Engineering. The approach is motivated by applications in physical and biological science but is quite general and should be applicable for uncertainty quantification in a wide range of machine learning regression models.