Dual Reconstruction Nets for Image Super-Resolution with Gradient Sensitive Loss


Abstract in English

Deep neural networks have exhibited promising performance in image super-resolution (SR) due to the power in learning the non-linear mapping from low-resolution (LR) images to high-resolution (HR) images. However, most deep learning methods employ feed-forward architectures, and thus the dependencies between LR and HR images are not fully exploited, leading to limited learning performance. Moreover, most deep learning based SR methods apply the pixel-wise reconstruction error as the loss, which, however, may fail to capture high-frequency information and produce perceptually unsatisfying results, whilst the recent perceptual loss relies on some pre-trained deep model and they may not generalize well. In this paper, we introduce a mask to separate the image into low- and high-frequency parts based on image gradient magnitude, and then devise a gradient sensitive loss to well capture the structures in the image without sacrificing the recovery of low-frequency content. Moreover, by investigating the duality in SR, we develop a dual reconstruction network (DRN) to improve the SR performance. We provide theoretical analysis on the generalization performance of our method and demonstrate its effectiveness and superiority with thorough experiments.

Download