Do you want to publish a course? Click here

Dual Reconstruction Nets for Image Super-Resolution with Gradient Sensitive Loss

221   0   0.0 ( 0 )
 Added by Mingkui Tan
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Deep neural networks have exhibited promising performance in image super-resolution (SR) due to the power in learning the non-linear mapping from low-resolution (LR) images to high-resolution (HR) images. However, most deep learning methods employ feed-forward architectures, and thus the dependencies between LR and HR images are not fully exploited, leading to limited learning performance. Moreover, most deep learning based SR methods apply the pixel-wise reconstruction error as the loss, which, however, may fail to capture high-frequency information and produce perceptually unsatisfying results, whilst the recent perceptual loss relies on some pre-trained deep model and they may not generalize well. In this paper, we introduce a mask to separate the image into low- and high-frequency parts based on image gradient magnitude, and then devise a gradient sensitive loss to well capture the structures in the image without sacrificing the recovery of low-frequency content. Moreover, by investigating the duality in SR, we develop a dual reconstruction network (DRN) to improve the SR performance. We provide theoretical analysis on the generalization performance of our method and demonstrate its effectiveness and superiority with thorough experiments.



rate research

Read More

By benefiting from perceptual losses, recent studies have improved significantly the performance of the super-resolution task, where a high-resolution image is resolved from its low-resolution counterpart. Although such objective functions generate near-photorealistic results, their capability is limited, since they estimate the reconstruction error for an entire image in the same way, without considering any semantic information. In this paper, we propose a novel method to benefit from perceptual loss in a more objective way. We optimize a deep network-based decoder with a targeted objective function that penalizes images at different semantic levels using the corresponding terms. In particular, the proposed method leverages our proposed OBB (Object, Background and Boundary) labels, generated from segmentation labels, to estimate a suitable perceptual loss for boundaries, while considering texture similarity for backgrounds. We show that our proposed approach results in more realistic textures and sharper edges, and outperforms other state-of-the-art algorithms in terms of both qualitative results on standard benchmarks and results of extensive user studies.
Different from traditional image super-resolution task, real image super-resolution(Real-SR) focus on the relationship between real-world high-resolution(HR) and low-resolution(LR) image. Most of the traditional image SR obtains the LR sample by applying a fixed down-sampling operator. Real-SR obtains the LR and HR image pair by incorporating different quality optical sensors. Generally, Real-SR has more challenges as well as broader application scenarios. Previous image SR methods fail to exhibit similar performance on Real-SR as the image data is not aligned inherently. In this article, we propose a Dual-path Dynamic Enhancement Network(DDet) for Real-SR, which addresses the cross-camera image mapping by realizing a dual-way dynamic sub-pixel weighted aggregation and refinement. Unlike conventional methods which stack up massive convolutional blocks for feature representation, we introduce a content-aware framework to study non-inherently aligned image pair in image SR issue. First, we use a content-adaptive component to exhibit the Multi-scale Dynamic Attention(MDA). Second, we incorporate a long-term skip connection with a Coupled Detail Manipulation(CDM) to perform collaborative compensation and manipulation. The above dual-path model is joint into a unified model and works collaboratively. Extensive experiments on the challenging benchmarks demonstrate the superiority of our model.
Recently, deep learning based single image super-resolution(SR) approaches have achieved great development. The state-of-the-art SR methods usually adopt a feed-forward pipeline to establish a non-linear mapping between low-res(LR) and high-res(HR) images. However, due to treating all image regions equally without considering the difficulty diversity, these approaches meet an upper bound for optimization. To address this issue, we propose a novel SR approach that discriminately processes each image region within an image by its difficulty. Specifically, we propose a dual-way SR network that one way is trained to focus on easy image regions and another is trained to handle hard image regions. To identify whether a region is easy or hard, we propose a novel image difficulty recognition network based on PSNR prior. Our SR approach that uses the region mask to adaptively enforce the dual-way SR network yields superior results. Extensive experiments on several standard benchmarks (e.g., Set5, Set14, BSD100, and Urban100) show that our approach achieves state-of-the-art performance.
Deep convolutional neural networks (CNNs) have been widely applied for low-level vision over the past five years. According to nature of different applications, designing appropriate CNN architectures is developed. However, customized architectures gather different features via treating all pixel points as equal to improve the performance of given application, which ignores the effects of local power pixel points and results in low training efficiency. In this paper, we propose an asymmetric CNN (ACNet) comprising an asymmetric block (AB), a memory enhancement block (MEB) and a high-frequency feature enhancement block (HFFEB) for image super-resolution. The AB utilizes one-dimensional asymmetric convolutions to intensify the square convolution kernels in horizontal and vertical directions for promoting the influences of local salient features for SISR. The MEB fuses all hierarchical low-frequency features from the AB via residual learning (RL) technique to resolve the long-term dependency problem and transforms obtained low-frequency features into high-frequency features. The HFFEB exploits low- and high-frequency features to obtain more robust super-resolution features and address excessive feature enhancement problem. Addditionally, it also takes charge of reconstructing a high-resolution (HR) image. Extensive experiments show that our ACNet can effectively address single image super-resolution (SISR), blind SISR and blind SISR of blind noise problems. The code of the ACNet is shown at https://github.com/hellloxiaotian/ACNet.
This paper proposes an explicit way to optimize the super-resolution network for generating visually pleasing images. The previous approaches use several loss functions which is hard to interpret and has the implicit relationships to improve the perceptual score. We show how to exploit the machine learning based model which is directly trained to provide the perceptual score on generated images. It is believed that these models can be used to optimizes the super-resolution network which is easier to interpret. We further analyze the characteristic of the existing loss and our proposed explicit perceptual loss for better interpretation. The experimental results show the explicit approach has a higher perceptual score than other approaches. Finally, we demonstrate the relation of explicit perceptual loss and visually pleasing images using subjective evaluation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا