No Arabic abstract
We analyze the phase diagrams of self-avoiding walk models of uniform branched polymers adsorbed at a surface and subject to an externally applied vertical pulling force which, at critical values, desorbs the polymer. In particular, models of adsorbed branched polymers with homeomorphism types stars, tadpoles, dumbbells and combs are examined. These models generalize earlier results on linear, ring and $3$-star polymers. In the case of star polymers we confirm a phase diagram with four phases (a free, an adsorbed, a ballistic, and a mixed phase) first seen in the paper by Janse van Rensburg EJ and Whittington SG 2018 J. Phys. A: Math. Theor. 51 204001 for $3$-star polymers. The phase diagram of tadpoles may include four phases (including a mixed phase) if the tadpole is pulled from the adsorbing surface by the end vertex of its tail. If it is instead pulled from the middle vertex of its head, then there are only three phases (the mixed phase is absent). For a dumbbell pulled from the middle vertex of a ring, there are only three phases. For combs with $t$ teeth there are four phases, independent of the value of $t$ for all $t ge 1$.
We investigate self-avoiding walk models of linear block copolymers adsorbed at a surface and desorbed by the action of a force. We rigorously establish the dependence of the free energy on the adsorption and force parameters, and the form of the phase diagram for several cases, including $AB$-diblock copolymers and $ABA$-triblock copolymers, pulled from an end vertex and from the central vertex. Our interest in block copolymers is partly motivated by the occurrence of a novel mixed phase in a directed walk model of diblock copolymers cite{Iliev} and we believe that this paper is the first rigorous treatment of a self-avoiding walk model of the situation.
We investigate the phase diagram of a self-avoiding walk model of a 3-star polymer in two dimensions, adsorbing at a surface and being desorbed by the action of a force. We show rigorously that there are four phases: a free phase, a ballistic phase, an adsorbed phase and a mixed phase where part of the 3-star is adsorbed and part is ballistic. We use both rigorous arguments and Monte Carlo methods to map out the phase diagram, and investigate the location and nature of the phase transition boundaries. In two dimensions, only two of the arms can be fully adsorbed in the surface and this alters the phase diagram when compared to 3-stars in three dimensions.
We consider a simple cubic lattice self-avoiding walk model of 3-star polymers adsorbed at a surface and then desorbed by pulling with an externally applied force. We determine rigorously the free energy of the model in terms of properties of a self-avoiding walk, and show that the phase diagram includes 4 phases, namely a ballistic phase where the extension normal to the surface is linear in the length, an adsorbed phase and a mixed phase, in addition to the free phase where the model is neither adsorbed nor ballistic. In the adsorbed phase all three branches or arms of the star are adsorbed at the surface. In the ballistic phase two arms of the star are pulled into a ballistic phase, while the remaining arm is in a free phase. In the mixed phase two arms in the star are adsorbed while the third arm is ballistic. The phase boundaries separating the ballistic and mixed phases, and the adsorbed and mixed phases, are both first order phase transitions. The presence of the mixed phase is interesting because it doesnt occur for pulled, adsorbed self-avoiding walks. In an atomic force microscopy experiment it would appear as an additional phase transition as a function of force.
We study asymptotic properties of diffusion and other transport processes (including self-avoiding walks and electrical conduction) on large randomly branched polymers using renormalized dynamical field theory. We focus on the swollen phase and the collapse transition, where loops in the polymers are irrelevant. Here the asymptotic statistics of the polymers is that of lattice trees, and diffusion on them is reminiscent of the climbing of a monkey on a tree. We calculate a set of universal scaling exponents including the diffusion exponent and the fractal dimension of the minimal path to 2-loop order and, where available, compare them to numerical results.
We establish an exact relation between self-avoiding branched polymers in D+2 continuum dimensions and the hard-core continuum gas at negative activity in D dimensions. We review conjectures and results on critical exponents for D+2 = 2,3,4 and show that they are corollaries of our result. We explain the connection (first proposed by Parisi and Sourlas) between branched polymers in D+2 dimensions and the Yang-Lee edge singularity in D dimensions.