Do you want to publish a course? Click here

Optimal lower bounds for multiple recurrence

74   0   0.0 ( 0 )
 Added by Anh N. Le
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Let $(X, mathcal{B},mu,T)$ be an ergodic measure preserving system, $A in mathcal{B}$ and $epsilon>0$. We study the largeness of sets of the form begin{equation*} begin{split} S = left{ ninmathbb{N}colonmu(Acap T^{-f_1(n)}Acap T^{-f_2(n)}Acapldotscap T^{-f_k(n)}A)> mu(A)^{k+1} - epsilon right} end{split} end{equation*} for various families ${f_1,dots,f_k}$ of sequences $f_icolon mathbb{N} to mathbb{N}$. For $k leq 3$ and $f_{i}(n)=i f(n)$, we show that $S$ has positive density if $f(n)=q(p_n)$ where $q in mathbb{Z}[x]$ satisfies $q(1)$ or $q(-1) =0$ and $p_n$ denotes the $n$-th prime; or when $f$ is a certain Hardy field sequence. If $T^q$ is ergodic for some $q in mathbb{N}$, then for all $r in mathbb{Z}$, $S$ is syndetic if $f(n) = qn + r$. For $f_{i}(n)=a_{i}n$, where $a_{i}$ are distinct integers, we show that $S$ can be empty for $kgeq 4$, and for $k = 3$ we found an interesting relation between the largeness of $S$ and the abundance of solutions to certain linear equations in sparse sets of integers. We also provide some partial results when the $f_{i}$ are distinct polynomials.



rate research

Read More

We provide various counter examples for quantitative multiple recurrence problems for systems with more than one transformation. We show that $bullet$ There exists an ergodic system $(X,mathcal{X},mu,T_1,T_2)$ with two commuting transformations such that for every $0<ell< 4$, there exists $Ainmathcal{X}$ such that $$mu(Acap T_{1}^{-n}Acap T_{2}^{-n}A)<mu(A)^{ell} text{ for every } n eq 0;$$ $bullet$ There exists an ergodic system $(X,mathcal{X},mu,T_1,T_2, T_{3})$ with three commuting transformations such that for every $ell>0$, there exists $Ainmathcal{X}$ such that $$mu(Acap T_{1}^{-n}Acap T_{2}^{-n}Acap T_{3}^{-n}A)<mu(A)^{ell} text{ for every } n eq 0;$$ $bullet$ There exists an ergodic system $(X,mathcal{X},mu,T_1,T_2)$ with two transformations generating a 2-step nilpotent group such that for every $ell>0$, there exists $Ainmathcal{X}$ such that $$mu(Acap T_{1}^{-n}Acap T_{2}^{-n}A)<mu(A)^{ell} text{ for every } n eq 0.$$
The purpose of this paper is to study the phenomenon of large intersections in the framework of multiple recurrence for measure-preserving actions of countable abelian groups. Among other things, we show: (1) If $G$ is a countable abelian group and $varphi, psi : G to G$ are homomorphisms such that $varphi(G)$, $psi(G)$, and $(psi - varphi)(G)$ have finite index in $G$, then for every ergodic measure-preserving system $(X, mathcal{B}, mu, (T_g)_{g in G})$, every set $A in mathcal{B}$, and every $varepsilon > 0$, the set ${g in G : mu(A cap T_{varphi(g)}^{-1}A cap T_{psi(g)}^{-1}A) > mu(A)^3 - varepsilon}$ is syndetic. (2) If $G$ is a countable abelian group and $r,s in mathbb{Z}$ are integers such that $rG$, $sG$, and $(r pm s)G$ have finite index in $G$, then for every ergodic measure-preserving system $(X, mathcal{B}, mu, (T_g)_{g in G})$, every set $A in mathcal{B}$, and every $varepsilon > 0$, the set ${g in G : mu(A cap T_{rg}^{-1}A cap T_{sg}^{-1}A cap T_{(r+s)g}^{-1}A) > mu(A)^4 - varepsilon}$ is syndetic. In particular, these extend and generalize results of Bergelson, Host, and Kra concerning $mathbb{Z}$-actions and of Bergelson, Tao, and Ziegler concerning $mathbb{F}_p^{infty}$-actions. Using an ergodic version of the Furstenberg correspondence principle, we obtain new combinatorial applications. We also discuss numerous examples shedding light on the necessity of the various hypotheses above. Our results lead to a number of interesting questions and conjectures, formulated in the introduction and at the end of the paper.
We establish characteristic factors for natural classes of polynomial multiple ergodic averages in rings of integers and derive corresponding Khintchine-type recurrence theorems, extending results of Frantzikinakis and Kra and of Frantzikinakis about polynomial configurations in $mathbb{Z}$. Using previous work of Griesmer and of the second author and Robertson, we reduce the problem of finding characteristic factors to proving a result on equidistribution of polynomial orbits in nilmanifolds, which is of independent interest.
We study the space complexity of sketching cuts and Laplacian quadratic forms of graphs. We show that any data structure which approximately stores the sizes of all cuts in an undirected graph on $n$ vertices up to a $1+epsilon$ error must use $Omega(nlog n/epsilon^2)$ bits of space in the worst case, improving the $Omega(n/epsilon^2)$ bound of Andoni et al. and matching the best known upper bound achieved by spectral sparsifiers. Our proof is based on a rigidity phenomenon for cut (and spectral) approximation which may be of independent interest: any two $d-$regular graphs which approximate each others cuts significantly better than a random graph approximates the complete graph must overlap in a constant fraction of their edges.
We establish new recurrence and multiple recurrence results for a rather large family $mathcal{F}$ of non-polynomial functions which includes tempered functions defined in [11], as well as functions from a Hardy field with the property that for some $ellin mathbb{N}cup{0}$, $lim_{xtoinfty }f^{(ell)}(x)=pminfty$ and $lim_{xtoinfty }f^{(ell+1)}(x)=0$. Among other things, we show that for any $finmathcal{F}$, any invertible probability measure preserving system $(X,mathcal{B},mu,T)$, any $Ainmathcal{B}$ with $mu(A)>0$, and any $epsilon>0$, the sets of returns $$ R_{epsilon, A}= big{ninmathbb{N}:mu(Acap T^{-lfloor f(n)rfloor}A)>mu^2(A)-epsilonbig} $$ and $$ R^{(k)}_{A}= big{ ninmathbb{N}: mubig(Acap T^{lfloor f(n)rfloor}Acap T^{lfloor f(n+1)rfloor}Acapcdotscap T^{lfloor f(n+k)rfloor}Abig)>0big} $$ possess somewhat unexpected properties of largeness; in particular, they are thick, i.e., contain arbitrarily long intervals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا