Do you want to publish a course? Click here

Benchmarking five global optimization approaches for nano-optical shape optimization and parameter reconstruction

257   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Numerical optimization is an important tool in the field of computational physics in general and in nano-optics in specific. It has attracted attention with the increase in complexity of structures that can be realized with nowadays nano-fabrication technologies for which a rational design is no longer feasible. Also, numerical resources are available to enable the computational photonic material design and to identify structures that meet predefined optical properties for specific applications. However, the optimization objective function is in general non-convex and its computation remains resource demanding such that the right choice for the optimization method is crucial to obtain excellent results. Here, we benchmark five global optimization methods for three typical nano-optical optimization problems: removed{downhill simplex optimization, the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm, particle swarm optimization, differential evolution, and Bayesian optimization} added{particle swarm optimization, differential evolution, and Bayesian optimization as well as multi-sta



rate research

Read More

Numerical simulation of complex optical structures enables their optimization with respect to specific objectives. Often, optimization is done by multiple successive parameter scans, which are time consuming and computationally expensive. We employ here Bayesian optimization with Gaussian processes in order to automatize and speed up the optimization process. As a toy example, we demonstrate optimization of the shape of a free-form reflective meta surface such that it diffracts light into a specific diffraction order. For this example, we compare the performance of six different Bayesian optimization approaches with various acquisition functions and various kernels of the Gaussian process.
We propose the combination of forward shape derivatives and the use of an iterative inversion scheme for Bayesian optimization to find optimal designs of nanophotonic devices. This approach widens the range of applicability of Bayesian optmization to situations where a larger number of iterations is required and where derivative information is available. This was previously impractical because the computational efforts required to identify the next evaluation point in the parameter space became much larger than the actual evaluation of the objective function. We demonstrate an implementation of the method by optimizing a waveguide edge coupler.
We present numerical studies of two photonic crystal membrane microcavities, a short line-defect cavity with relatively low quality ($Q$) factor and a longer cavity with high $Q$. We use five state-of-the-art numerical simulation techniques to compute the cavity $Q$ factor and the resonance wavelength $lambda$ for the fundamental cavity mode in both structures. For each method, the relevant computational parameters are systematically varied to estimate the computational uncertainty. We show that some methods are more suitable than others for treating these challenging geometries.
Randomized benchmarking (RB) is a widely used method for estimating the average fidelity of gates implemented on a quantum computing device. The stochastic error of the average gate fidelity estimated by RB depends on the sampling strategy (i.e., how to sample sequences to be run in the protocol). The sampling strategy is determined by a set of configurable parameters (an RB configuration) that includes Clifford lengths (a list of the number of independent Clifford gates in a sequence) and the number of sequences for each Clifford length. The RB configuration is often chosen heuristically and there has been little research on its best configuration. Therefore, we propose a method for fully optimizing an RB configuration so that the confidence interval of the estimated fidelity is minimized while not increasing the total execution time of sequences. By experiments on real devices, we demonstrate the efficacy of the optimization method against heuristic selection in reducing the variance of the estimated fidelity.
Optical scatterometry is a method to measure the size and shape of periodic micro- or nanostructures on surfaces. For this purpose the geometry parameters of the structures are obtained by reproducing experimental measurement results through numerical simulations. We compare the performance of Bayesian optimization to different local minimization algorithms for this numerical optimization problem. Bayesian optimization uses Gaussian-process regression to find promising parameter values. We examine how pre-computed simulation results can be used to train the Gaussian process and to accelerate the optimization.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا