By combining scanning tunneling microscopy/spectroscopy and first-principles calculations, we systematically study the local electronic states of magnetic dopants V and Cr in the topological insulator (TI) Sb2Te3. Spectroscopic imaging shows diverse local defect states between Cr and V, which agree with our first-principle calculations. The unique spectroscopic features of V and Cr dopants provide electronic fingerprints for the co-doped magnetic TI samples with the enhanced quantum anomalous Hall effect. Our results also facilitate the exploration of the underlying mechanism of the enhanced quantum anomalous Hall temperature in Cr/V co-doped TIs.