When the obstacle problem of clamped Kirchhoff plates is discretized by a partition of unity method, the resulting discrete variational inequalities can be solved by a primal-dual active set algorithm. In this paper we develop and analyze additive Schwarz preconditioners for the systems that appear in each iteration of the primal-dual active set algorithm. Numerical results that corroborate the theoretical estimates are also presented.
This paper gives a unified convergence analysis of additive Schwarz methods for general convex optimization problems. Resembling to the fact that additive Schwarz methods for linear problems are preconditioned Richardson methods, we prove that additive Schwarz methods for general convex optimization are in fact gradient methods. Then an abstract framework for convergence analysis of additive Schwarz methods is proposed. The proposed framework applied to linear elliptic problems agrees with the classical theory. We present applications of the proposed framework to various interesting convex optimization problems such as nonlinear elliptic problems, nonsmooth problems, and nonsharp problems.
In this work, we propose and develop efficient and accurate numerical methods for solving the Kirchhoff-Love plate model in domains with complex geometries. The algorithms proposed here employ curvilinear finite-difference methods for spatial discretization of the governing PDEs on general composite overlapping grids. The coupling of different components of the composite overlapping grid is through numerical interpolations. However, interpolations introduce perturbation to the finite-difference discretization, which causes numerical instability for time-stepping schemes used to advance the resulted semi-discrete system. To address the instability, we propose to add a fourth-order hyper-dissipation to the spatially discretized system to stabilize its time integration; this additional dissipation term captures the essential upwinding effect of the original upwind scheme. The investigation of strategies for incorporating the upwind dissipation term into several time-stepping schemes (both explicit and implicit) leads to the development of four novel algorithms. For each algorithm, formulas for determining a stable time step and a sufficient dissipation coefficient on curvilinear grids are derived by performing a local Fourier analysis. Quadratic eigenvalue problems for a simplified model plate in 1D domain are considered to reveal the weak instability due to the presence of interpolating equations in the spatial discretization. This model problem is further investigated for the stabilization effects of the proposed algorithms. Carefully designed numerical experiments are carried out to validate the accuracy and stability of the proposed algorithms, followed by two benchmark problems to demonstrate the capability and efficiency of our approach for solving realistic applications. Results that concern the performance of the proposed algorithms are also presented.
A symmetric and a nonsymmetric variant of the additive Schwarz preconditioner are proposed for the solution of a nonsymmetric system of algebraic equations arising from a general finite volume element discretization of symmetric elliptic problems with large jumps in the entries of the coefficient matrices across subdomains. It is shown in the analysis, that the convergence of the preconditioned GMRES iteration with the proposed preconditioners, depends polylogarithmically on the mesh parameters, in other words, the convergence is only weakly dependent on the mesh parameters, and it is robust with respect to the jumps in the coefficients.
In this paper, we propose an overlapping additive Schwarz method for total variation minimization based on a dual formulation. The $O(1/n)$-energy convergence of the proposed method is proven, where $n$ is the number of iterations. In addition, we introduce an interesting convergence property called pseudo-linear convergence of the proposed method; the energy of the proposed method decreases as fast as linearly convergent algorithms until it reaches a particular value. It is shown that such the particular value depends on the overlapping width $delta$, and the proposed method becomes as efficient as linearly convergent algorithms if $delta$ is large. As the latest domain decomposition methods for total variation minimization are sublinearly convergent, the proposed method outperforms them in the sense of the energy decay. Numerical experiments which support our theoretical results are provided.
We present an analysis of the additive average Schwarz preconditioner with two newly proposed adaptively enriched coarse spaces which was presented at the 23rd International conference on domain decomposition methods in Korea, for solving second order elliptic problems with highly varying and discontinuous coefficients. It is shown that the condition number of the preconditioned system is bounded independently of the variations and the jumps in the coefficient, and depends linearly on the mesh parameter ratio H/h, that is the ratio between the subdomain size and the mesh size, thereby retaining the same optimality and scalablity of the original additive average Schwarz preconditioner.
Susanne C. Brenner
,Christopher B. Davis
,Li-yeng Sung
.
(2018)
.
"Additive Schwarz Preconditioners for the Obstacle Problem of Clamped Kirchhoff Plates"
.
Susanne Brenner
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا