Do you want to publish a course? Click here

Discontinuous shear-thinning in adhesive dispersions

71   0   0.0 ( 0 )
 Added by Claus Heussinger
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present simulations for the steady-shear rheology of a model adhesive dispersion. We vary the range of the attractive forces $u$ as well as the strength of the dissipation $b$. For large dissipative forces, the rheology is governed by the Weisenberg number $ text{Wi}sim bdotgamma/u$ and displays Herschel-Bulkley form $sigma = sigma_y+ctext{Wi}^ u$ with exponent $ u=0.45$. Decreasing the strength of dissipation, the scaling with $text{Wi}$ breaks down and inertial effects show up. The stress decreases via the Johnson-Samwer law $Deltasigmasim T_s^{2/3}$, where temperature $T_s$ is exclusively due to shear-induced vibrations. During flow particles prefer to rotate around each other such that the dominant velocities are directed tangentially to the particle surfaces. This tangential channel of energy dissipation and its suppression leads to a discontinuity in the flow curve, and an associated discontinuous shear thinning transition. We set up an analogy with frictional systems, where the phenomenon of discontinuous shear thickening occurs. In both cases tangential forces, frictional or viscous, mediate a transition from one branch of the flowcurve with low tangential dissipation to one with large tangential dissipation.



rate research

Read More

In directionally-dried colloidal dispersions regular bands can appear behind the drying front, inclined at $pm45^circ$ to the drying line. Although these features have been noted to share visual similarities to shear bands in metal, no physical mechanism for their formation has ever been suggested, until very recently. Here, through microscopy of silica and polystyrene dispersions, dried in Hele-Shaw cells, we demonstrate that the bands are indeed associated with local shear strains. We further show how the bands form, that they scale with the thickness of the drying layer, and that they are eliminated by the addition of salt to the drying dispersions. Finally, we reveal the origins of these bands in the compressive forces associated with drying, and show how they affect the optical properties (birefringence) of colloidal films and coatings.
We report direct measurements of spatially resolved surface stresses over the entire surface of a dense suspension during discontinuous shear thickening (DST) using Boundary Stress Microscopy (BSM) in a parallel-plate rheometer. We find that large fluctuations in the bulk rheological response at the onset of DST are the result of localized transitions to a state with very high stress, consistent with a fully jammed solid that makes direct contact with the shearing boundaries. That jammed solid like phase (SLP) is rapidly fractured, producing two separate SLPs that propagate in opposite directions. By comparing the speed of propagation of the SLPs with the motion of the confining plates, we deduce that one remains in contact with the bottom boundary, and another remains in contact with the top. These regions grow, bifurcate, and eventually interact and decay in a complex manner that depends on the measurement conditions (constant shear rate vs constant stress). In constant applied stress mode, BSM directly reveals dramatic stress fluctuations that are completely missed in standard bulk rheology.
Droplet-based microfluidics turned out to be an efficient and adjustable platform for digital analysis, encapsulation of cells, drug formulation, and polymerase chain reaction. Typically, for most biomedical applications, the handling of complex, non-Newtonian fluids is involved, e.g. synovial and salivary fluids, collagen, and gel scaffolds. In this study we investigate the problem of droplet formation occurring in a microfluidic T-shaped junction, when the continuous phase is made of shear thinning liquids. At first, we review in detail the breakup process providing extensive, side-by-side comparisons between Newtonian and non-Newtonian liquids over unexplored ranges of flow conditions and viscous responses. The non-Newtonian liquid carrying the droplets is made of Xanthan solutions, a stiff rod-like polysaccharide displaying a marked shear thinning rheology. By defining an effective Capillary number, a simple yet effective methodology is used to account for the shear-dependent viscous response occurring at the breakup. The droplet size can be predicted over a wide range of flow conditions simply by knowing the rheology of the bulk continuous phase. Experimental results are complemented with numerical simulations of purely shear thinning fluids using Lattice Boltzmann models. The good agreement between the experimental and numerical data confirm the validity of the proposed rescaling with the effective Capillary number.
Dynamic particle-scale numerical simulations are used to show that the shear thickening observed in dense colloidal, or Brownian, suspensions is of a similar nature to that observed in non-colloidal suspensions, i.e., a stress-induced transition from a flow of lubricated near-contacting particles to a flow of a frictionally contacting network of particles. Abrupt (or discontinuous) shear thickening is found to be a geometric rather than hydrodynamic phenomenon; it stems from the strong sensitivity of the jamming volume fraction to the nature of contact forces between suspended particles. The thickening obtained in a colloidal suspension of purely hard frictional spheres is qualitatively similar to experimental observations. However, the agreement cannot be made quantitative with only hydrodynamics, frictional contacts and Brownian forces. Therefore the role of a short-range repulsive potential mimicking the stabilization of actual suspensions on the thickening is studied. The effects of Brownian and repulsive forces on the onset stress can be combined in an additive manner. The simulations including Brownian and stabilizing forces show excellent agreement with experimental data for the viscosity $eta$ and the second normal stress difference $N_2$.
We report rheological measurements of a noncolloidal particle suspension in a Newtonian solvent at 40% solid volume fraction. An anomalous, frequency-dependent complex viscosity is found under oscillatory shear (OS) flow, whereas a constant dynamic viscosity is found under the same shear rates in steady shear (SS) flow. We show that this contradiction arises from the underlying microstructural difference between OS and SS, mediated by weak interparticle forces. Discrete element simulations of proxy particle suspensions confirm this hypothesis and reveal an adhesion-induced, shear thinning mechanism with a -1/5 slope, only in OS, in agreement with experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا