Do you want to publish a course? Click here

Path Integral Approach to Random Neural Networks

109   0   0.0 ( 0 )
 Added by Andrea Crisanti
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work we study of the dynamics of large size random neural networks. Different methods have been developed to analyse their behavior, most of them rely on heuristic methods based on Gaussian assumptions regarding the fluctuations in the limit of infinite sizes. These approaches, however, do not justify the underlying assumptions systematically. Furthermore, they are incapable of deriving in general the stability of the derived mean field equations, and they are not amenable to analysis of finite size corrections. Here we present a systematic method based on Path Integrals which overcomes these limitations. We apply the method to a large non-linear rate based neural network with random asymmetric connectivity matrix. We derive the Dynamic Mean Field (DMF) equations for the system, and derive the Lyapunov exponent of the system. Although the main results are well known, here for the first time, we calculate the spectrum of fluctuations around the mean field equations from which we derive the general stability conditions for the DMF states. The methods presented here, can be applied to neural networks with more complex dynamics and architectures. In addition, the theory can be used to compute systematic finite size corrections to the mean field equations.



rate research

Read More

We review results on the scaling of the optimal path length in random networks with weighted links or nodes. In strong disorder we find that the length of the optimal path increases dramatically compared to the known small world result for the minimum distance. For ErdH{o}s-Renyi (ER) and scale free networks (SF), with parameter $lambda$ ($lambda >3$), we find that the small-world nature is destroyed. We also find numerically that for weak disorder the length of the optimal path scales logaritmically with the size of the networks studied. We also review the transition between the strong and weak disorder regimes in the scaling properties of the length of the optimal path for ER and SF networks and for a general distribution of weights, and suggest that for any distribution of weigths, the distribution of optimal path lengths has a universal form which is controlled by the scaling parameter $Z=ell_{infty}/A$ where $A$ plays the role of the disorder strength, and $ell_{infty}$ is the length of the optimal path in strong disorder. The relation for $A$ is derived analytically and supported by numerical simulations. We then study the minimum spanning tree (MST) and show that it is composed of percolation clusters, which we regard as super-nodes, connected by a scale-free tree. We furthermore show that the MST can be partitioned into two distinct components. One component the {it superhighways}, for which the nodes with high centrality dominate, corresponds to the largest cluster at the percolation threshold which is a subset of the MST. In the other component, {it roads}, low centrality nodes dominate. We demonstrate the significance identifying the superhighways by showing that one can improve significantly the global transport by improving a very small fraction of the network.
We present two complementary analytical approaches for calculating the distribution of shortest path lengths in Erdos-Renyi networks, based on recursion equations for the shells around a reference node and for the paths originating from it. The results are in agreement with numerical simulations for a broad range of network sizes and connectivities. The average and standard deviation of the distribution are also obtained. In the case that the mean degree scales as $N^{alpha}$ with the network size, the distribution becomes extremely narrow in the asymptotic limit, namely almost all pairs of nodes are equidistant, at distance $d=lfloor 1/alpha rfloor$ from each other. The distribution of shortest path lengths between nodes of degree $m$ and the rest of the network is calculated. Its average is shown to be a monotonically decreasing function of $m$, providing an interesting relation between a local property and a global property of the network. The methodology presented here can be applied to more general classes of networks.
123 - M. Tchoffo , A.A. Belinson 2006
The stochastization of the Jacobi second equality of classical mechanics, by Gaussian white noises for the Lagrangian of a particle in an arbitrary field is considered. The quantum mechanical Hamilton operator similar to that in Euclidian quantum theory is obtained. The conditional transition probability density of the presence of a Browmian particle is obtained with the help of the functional integral. The technique of factorisation of the solution of the Fokker-Planck equation is employed to evaluate the effective potential energy.
Recent progress in the development of efficient computational algorithms to price financial derivatives is summarized. A first algorithm is based on a path integral approach to option pricing, while a second algorithm makes use of a neural network parameterization of option prices. The accuracy of the two methods is established from comparisons with the results of the standard procedures used in quantitative finance.
Recently it has been suggested that fermions whose hopping amplitude is quenched to extremely low values provide a convenient source of local disorder for lattice bosonic systems realized in current experiment on ultracold atoms. Here we investigate the phase diagram of such systems, which provide the experimental realization of a Bose-Hubbard model whose local potentials are randomly extracted from a binary distribution. Adopting a site-dependent Gutzwiller description of the state of the system, we address one- and two-dimensional lattices and obtain results agreeing with previous findings, as far as the compressibility of the system is concerned. We discuss the expected peaks in the experimental excitation spectrum of the system, related to the incompressible phases, and the superfluid character of the {it partially compressible phases} characterizing the phase diagram of systems with binary disorder. In our investigation we make use of several analytical results whose derivation is described in the appendices, and whose validity is not limited to the system under concern.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا