Do you want to publish a course? Click here

A unitary distributed subgradient method for multi-agent optimization with different coupling sources

65   0   0.0 ( 0 )
 Added by Changxin Liu
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

In this work, we first consider distributed convex constrained optimization problems where the objective function is encoded by multiple local and possibly nonsmooth objectives privately held by a group of agents, and propose a distributed subgradient method with double averaging (abbreviated as ${rm DSA_2}$) that only requires peer-to-peer communication and local computation to solve the global problem. The algorithmic framework builds on dual methods and dynamic average consensus; the sequence of test points is formed by iteratively minimizing a local dual model of the overall objective where the coefficients, i.e., approximated subgradients of the objective, are supplied by the dynamic average consensus scheme. We theoretically show that ${rm DSA_2}$ enjoys non-ergodic convergence properties, i.e., the local minimizing sequence itself is convergent, a distinct feature that cannot be found in existing results. Specifically, we establish a convergence rate of $O(frac{1}{sqrt{t}})$ in terms of objective function error. Then, extensions are made to tackle distributed optimization problems with coupled functional constraints by combining ${rm DSA_2}$ and dual decomposition. This is made possible by Lagrangian relaxation that transforms the coupling in constraints of the primal problem into that in cost functions of the dual, thus allowing us to solve the dual problem via ${rm DSA_2}$. Both the dual objective error and the quadratic penalty for the coupled constraint are proved to converge at a rate of $O(frac{1}{sqrt{t}})$, and the primal objective error asymptotically vanishes. Numerical experiments and comparisons are conducted to illustrate the advantage of the proposed algorithms and validate our theoretical findings.



rate research

Read More

253 - Kui Zhu , Yutao Tang 2021
This paper studies the distributed optimization problem where the objective functions might be nondifferentiable and subject to heterogeneous set constraints. Unlike existing subgradient methods, we focus on the case when the exact subgradients of the local objective functions can not be accessed by the agents. To solve this problem, we propose a projected primal-dual dynamics using only the objective functions approximate subgradients. We first prove that the formulated optimization problem can only be solved with an approximate error depending upon the accuracy of the available subgradients. Then, we show the exact solvability of this optimization problem if the accumulated approximation error is not too large. After that, we also give a novel componentwise normalized variant to improve the transient behavior of the convergent sequence. The effectiveness of our algorithms is verified by a numerical example.
In this paper, we aim to solve a distributed optimization problem with coupling constraints based on proximal gradient method in a multi-agent network, where the cost function of the agents is composed of smooth and possibly non-smooth parts. To solve this problem, we resort to the dual problem by deriving the Fenchel conjugate, resulting in a consensus based constrained optimization problem. Then, we propose a fully distributed dual proximal gradient algorithm, where the agents make decisions only with local parameters and the information of immediate neighbours. Moreover, provided that the non-smooth parts in the primal cost functions are with some simple structures, we only need to update dual variables by some simple operations and the overall computational complexity can be reduced. Analytical convergence rate of the proposed algorithm is derived and the efficacy is numerically verified by a social welfare optimization problem in the electricity market.
This work develops effective distributed strategies for the solution of constrained multi-agent stochastic optimization problems with coupled parameters across the agents. In this formulation, each agent is influenced by only a subset of the entries of a global parameter vector or model, and is subject to convex constraints that are only known locally. Problems of this type arise in several applications, most notably in disease propagation models, minimum-cost flow problems, distributed control formulations, and distributed power system monitoring. This work focuses on stochastic settings, where a stochastic risk function is associated with each agent and the objective is to seek the minimizer of the aggregate sum of all risks subject to a set of constraints. Agents are not aware of the statistical distribution of the data and, therefore, can only rely on stochastic approximations in their learning strategies. We derive an effective distributed learning strategy that is able to track drifts in the underlying parameter model. A detailed performance and stability analysis is carried out showing that the resulting coupled diffusion strategy converges at a linear rate to an $O(mu)-$neighborhood of the true penalized optimizer.
A collection of optimization problems central to power system operation requires distributed solution architectures to avoid the need for aggregation of all information at a central location. In this paper, we study distributed dual subgradient methods to solve three such optimization problems. Namely, these are tie-line scheduling in multi-area power systems, coordination of distributed energy resources in radial distribution networks, and joint dispatch of transmission and distribution assets. With suitable relaxations or approximations of the power flow equations, all three problems can be reduced to a multi-agent constrained convex optimization problem. We utilize a constant step-size dual subgradient method with averaging on these problems. For this algorithm, we provide a convergence guarantee that is shown to be order-optimal. We illustrate its application on the grid optimization problems.
This work studies multi-agent sharing optimization problems with the objective function being the sum of smooth local functions plus a convex (possibly non-smooth) function coupling all agents. This scenario arises in many machine learning and engineering applications, such as regression over distributed features and resource allocation. We reformulate this problem into an equivalent saddle-point problem, which is amenable to decentralized solutions. We then propose a proximal primal-dual algorithm and establish its linear convergence to the optimal solution when the local functions are strongly-convex. To our knowledge, this is the first linearly convergent decentralized algorithm for multi-agent sharing problems with a general convex (possibly non-smooth) coupling function.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا