Do you want to publish a course? Click here

A remark on the extension of $L^{2}$ holomorphic functions

84   0   0.0 ( 0 )
 Added by Qi'an Guan
 Publication date 2018
  fields
and research's language is English
 Authors Qian Guan




Ask ChatGPT about the research

In this note, we answer a question on the extension of $L^{2}$ holomorphic functions posed by Ohsawa.



rate research

Read More

102 - Matt Hohertz 2021
Kalantaris Geometric Modulus Principle describes the local behavior of the modulus of a polynomial. Specifically, if $p(z) = a_0 + sum_{j=k}^n a_jleft(z-z_0right)^j,;a_0a_ka_n eq 0$, then the complex plane near $z = z_0$ comprises $2k$ sectors of angle $frac{pi}{k}$, alternating between arguments of ascent (angles $theta$ where $|p(z_0 + te^{itheta})| > |p(z_0)|$ for small $t$) and arguments of descent (where the opposite inequality holds). In this paper, we generalize the Geometric Modulus Principle to holomorphic and harmonic functions. As in Kalantaris original paper, we use these extensions to give succinct, elegant new proofs of some classical theorems from analysis.
In the present paper, we show that given a compact Kahler manifold $(X,omega)$ with a Kahler metric $omega$, and a complex submanifold $Vsubset X$ of positive dimension, if $V$ has a holomorphic retraction structure in $X$, then any quasi-plurisubharmonic function $varphi$ on $V$ such that $omega|_V+sqrt{-1}partialbarpartialvarphigeq varepsilonomega|_V$ with $varepsilon>0$ can be extended to a quasi-plurisubharmonic function $Phi$ on $X$, such that $omega+sqrt{-1}partialbarpartial Phigeq varepsilonomega$ for some $varepsilon>0$. This is an improvement of results in cite{WZ20}. Examples satisfying the assumption that there exists a holomorphic retraction structure contain product manifolds, thus contains many compact Kahler manifolds which are not necessarily projective.
57 - Qian Guan , Xiangyu Zhou 2017
In this note, we reveal that our solution of Demaillys strong openness conjecture implies a matrix version of the conjecture; our solutions of two conjectures of Demailly-Koll{a}r and Jonsson-Mustatu{a} implies the truth of twist
101 - John P. DAngelo 2017
We prove that a certain positivity condition, considerably more general than pseudoconvexity, enables one to conclude that the regular order of contact and singular order of contact agree when these numbers are $4$.
142 - Anirban Dawn 2020
It is shown that the Laurent series of a holomorphic function smooth up to the boundary on a Reinhardt domain in $mathbb{C}^n$ converges unconditionally to the function in the Fr{e}chet topology of the space of functions smooth up to the boundary.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا