Do you want to publish a course? Click here

Graph Convolutional Networks for Text Classification

70   0   0.0 ( 0 )
 Added by Liang Yao
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Text classification is an important and classical problem in natural language processing. There have been a number of studies that applied convolutional neural networks (convolution on regular grid, e.g., sequence) to classification. However, only a limited number of studies have explored the more flexible graph convolutional neural networks (convolution on non-grid, e.g., arbitrary graph) for the task. In this work, we propose to use graph convolutional networks for text classification. We build a single text graph for a corpus based on word co-occurrence and document word relations, then learn a Text Graph Convolutional Network (Text GCN) for the corpus. Our Text GCN is initialized with one-hot representation for word and document, it then jointly learns the embeddings for both words and documents, as supervised by the known class labels for documents. Our experimental results on multiple benchmark datasets demonstrate that a vanilla Text GCN without any external word embeddings or knowledge outperforms state-of-the-art methods for text classification. On the other hand, Text GCN also learns predictive word and document embeddings. In addition, experimental results show that the improvement of Text GCN over state-of-the-art comparison methods become more prominent as we lower the percentage of training data, suggesting the robustness of Text GCN to less training data in text classification.

rate research

Read More

97 - Irene Li , Tianxiao Li , Yixin Li 2021
Multi-label text classification (MLTC) is an attractive and challenging task in natural language processing (NLP). Compared with single-label text classification, MLTC has a wider range of applications in practice. In this paper, we propose a heterogeneous graph convolutional network model to solve the MLTC problem by modeling tokens and labels as nodes in a heterogeneous graph. In this way, we are able to take into account multiple relationships including token-level relationships. Besides, the model allows a good explainability as the token-label edges are exposed. We evaluate our method on three real-world datasets and the experimental results show that it achieves significant improvements and outperforms state-of-the-art comparison methods.
AMR-to-text generation is used to transduce Abstract Meaning Representation structures (AMR) into text. A key challenge in this task is to efficiently learn effective graph representations. Previously, Graph Convolution Networks (GCNs) were used to encode input AMRs, however, vanilla GCNs are not able to capture non-local information and additionally, they follow a local (first-order) information aggregation scheme. To account for these issues, larger and deeper GCN models are required to capture more complex interactions. In this paper, we introduce a dynamic fusion mechanism, proposing Lightweight Dynamic Graph Convolutional Networks (LDGCNs) that capture richer non-local interactions by synthesizing higher order information from the input graphs. We further develop two novel parameter saving strategies based on the group graph convolutions and weight tied convolutions to reduce memory usage and model complexity. With the help of these strategies, we are able to train a model with fewer parameters while maintaining the model capacity. Experiments demonstrate that LDGCNs outperform state-of-the-art models on two benchmark datasets for AMR-to-text generation with significantly fewer parameters.
Recently, researches have explored the graph neural network (GNN) techniques on text classification, since GNN does well in handling complex structures and preserving global information. However, previous methods based on GNN are mainly faced with the practical problems of fixed corpus level graph structure which do not support online testing and high memory consumption. To tackle the problems, we propose a new GNN based model that builds graphs for each input text with global parameters sharing instead of a single graph for the whole corpus. This method removes the burden of dependence between an individual text and entire corpus which support online testing, but still preserve global information. Besides, we build graphs by much smaller windows in the text, which not only extract more local features but also significantly reduce the edge numbers as well as memory consumption. Experiments show that our model outperforms existing models on several text classification datasets even with consuming less memory.
In cross-lingual text classification, it is required that task-specific training data in high-resource source languages are available, where the task is identical to that of a low-resource target language. However, collecting such training data can be infeasible because of the labeling cost, task characteristics, and privacy concerns. This paper proposes an alternative solution that uses only task-independent word embeddings of high-resource languages and bilingual dictionaries. First, we construct a dictionary-based heterogeneous graph (DHG) from bilingual dictionaries. This opens the possibility to use graph neural networks for cross-lingual transfer. The remaining challenge is the heterogeneity of DHG because multiple languages are considered. To address this challenge, we propose dictionary-based heterogeneous graph neural network (DHGNet) that effectively handles the heterogeneity of DHG by two-step aggregations, which are word-level and language-level aggregations. Experimental results demonstrate that our method outperforms pretrained models even though it does not access to large corpora. Furthermore, it can perform well even though dictionaries contain many incorrect translations. Its robustness allows the usage of a wider range of dictionaries such as an automatically constructed dictionary and crowdsourced dictionary, which are convenient for real-world applications.
Graph convolutional network (GCN) has become popular in various natural language processing (NLP) tasks with its superiority in long-term and non-consecutive word interactions. However, existing single-hop graph reasoning in GCN may miss some important non-consecutive dependencies. In this study, we define the spectral graph convolutional network with the high-order dynamic Chebyshev approximation (HDGCN), which augments the multi-hop graph reasoning by fusing messages aggregated from direct and long-term dependencies into one convolutional layer. To alleviate the over-smoothing in high-order Chebyshev approximation, a multi-vote-based cross-attention (MVCAttn) with linear computation complexity is also proposed. The empirical results on four transductive and inductive NLP tasks and the ablation study verify the efficacy of the proposed model. Our source code is available at https://github.com/MathIsAll/HDGCN-pytorch.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا