No Arabic abstract
We explore the evolution of the time variability (in the optical $g$-band and on timescales of weeks to years) of SDSS Stripe 82 quasars along the quasar main sequence. A parent sample of $1004$ quasars within $0.5leq z leq 0.89$ are used for our statistical studies, we then make subsamples from our parent sample: a subsample of $246$ quasars with similar luminosities, and a subsample of $399$ quasars with similar Rfe (i.e., the ratio of the equivalent width of FeII within $4435$--$4685 mathrm{AA}$ to that of Hbeta). We find the variability amplitude decreases with luminosity ($L_{mathrm{bol}}$). The anti-correlation between the variability amplitude and Rfe is weak but statistically significant. The characteristic timescale, $tau$, correlates mostly with quasar luminosity, its dependence on Rfe is statistically insignificant. After controlling luminosity and Rfe, the high- and low-FWHM samples have similar structure functions. These results support the framework that Rfe is governed by Eddington ratio and FWHM of Hbeta is mostly determined by orientation. We then provide new empirical relations between variability parameters and quasar properties (i.e., luminosity and Rfe). Our new relations are consistent with the scenario that quasar variability is driven by the thermal fluctuations in the accretion disk, $tau$ seems to correspond to the thermal timescale. From our new relations, we find the short-term variability is mostly sensitive to $L_{mathrm{bol}}$. Basing on this, we propose that quasar short-term (a few months) variability might be a new type of Standard Candle and can be adopted to probe cosmology.
Following the established view of the AGNs inner workings, an AGN is radio-loud (RL) if associated with relativistic ejections emitting a radio synchrotron spectrum (i.e., a jetted AGN). If large samples of optically-selected quasars are considered, AGNs are identified as RL if their Kellermanns radio loudness ratio RK > 10. Our aims are to characterize the optical properties of different classes based on radio-loudness within the quasar main sequence (MS) and to test whether the condition RK > 10 is sufficient for the identification of RL AGNs. A sample of 355 quasars was selected by cross-correlating the FIRST survey with the SDSS DR14 quasar catalog. We classified the optical spectra according to their spectral types along the quasars MS. For each spectral type, we distinguished compact and extended morphology, and three classes of radio-loudness: detected (specific flux ratio in the g band and at 1.4GHz, RK < 10, RD), intermediate (10 < RK < 70, RI), and radio loud (RK > 70). The analysis revealed systematic differences between RD, RI, and RL in each spectral type along the MS. We show that spectral bins that contain the extreme Population A sources have radio power compatible with emission by mechanisms ultimately due to star formation processes. RL sources of Population B are characteristically jetted. Their broad H-beta profiles can be interpreted as due to a binary broad-line region. We suggest that RL Population B sources should be preferential targets for the search of black hole binaries, and present a sample of binary black hole AGN candidates. The validity of the Kellermanns criterion may be dependent on the source location along the quasar MS. The consideration of the MS trends allowed to distinguish between sources whose radio emission mechanisms is jetted from the ones where the mechanism is likely to be fundamentally different.
Low-mass pre-main sequence (PMS) stars are strong and variable X-ray emitters, as has been well established by EINSTEIN and ROSAT observatories. It was originally believed that this emission was of thermal nature and primarily originated from coronal activity (magnetically confined loops, in analogy with Solar activity) on contracting young stars. Broadband spectral analysis showed that the emission was not isothermal and that elemental abundances were non-Solar. The resolving power of the Chandra and XMM X-ray gratings spectrometers have provided the first, tantalizing details concerning the physical conditions such as temperatures, densities, and abundances that characterize the X-ray emitting regions of young star. These existing high resolution spectrometers, however, simply do not have the effective area to measure diagnostic lines for a large number of PMS stars over required to answer global questions such as: how does magnetic activity in PMS stars differ from that of main sequence stars, how do they evolve, what determines the population structure and activity in stellar clusters, and how does the activity influence the evolution of protostellar disks. Highly resolved (R>3000) X-ray spectroscopy at orders of magnitude greater efficiency than currently available will provide major advances in answering these questions. This requires the ability to resolve the key diagnostic emission lines with a precision of better than 100 km/s.
The main sequence offers a method for the systematization of quasar spectral properties. Extreme FeII emitters (or extreme Population A, xA) are believed to be sources accreting matter at very high rates. They are easily identifiable along the quasar main sequence, in large spectroscopic surveys over a broad redshift range. The very high accretion rate makes it possible that massive black holes hosted in xA quasars radiate at a stable, extreme luminosity-to-mass ratio. After reviewing the basic interpretation of the main sequence, we report on the possibility of identifying virial broadening estimators from low-ionization line widths, and provide evidence of the conceptual validity of redshift-independent luminosities based on virial broadening for a known luminosity-to-mass ratio.
The concept of the quasar main sequence is very attractive since it stresses correlations between various parameters and implies the underlying simplicity. In the optical plane defined by the width of the H{beta} line and the ratio of the equivalent width of the Fe II to H{beta} observed objects form a characteristic pattern. In this paper, we use a physically motivated model to explain the distribution of quasars in the optical plane. Continuum is modelled as an accretion disk with a hard X-ray power law uniquely tight to the disk at the basis of observational scaling, and the Broad Line Region distance is determined also from observational scaling. We perform the computations of the FeII and H{beta} line production with the code CLOUDY. We have only six free parameters for an individual source: maximum temperature of the accretion disk, Eddington ratio, cloud density, cloud column density, microturbulence, and iron abundance, and only the last four remain as global parameters in our modelling of the whole sequence. Our theoretically computed points cover well the optical plane part populated with the observed quasars, particularly if we allow for super-Solar abundance of heavy elements. Explanation of the exceptionally strong Fe II emitter requires a stronger contribution from the dark sides of the clouds. Analyzing the way how our model covers the optical plane we conclude that there is no single simple driver behind the sequence, as neither the Eddington ratio nor broad band spectrum shape plays the dominant role. Also, the role of the viewing angle in providing the dispersion of the quasar main sequence is apparently not as strong as expected.
We present a comprehensive investigation of main-sequence (MS) binaries in the DRAGON simulations, which are the first one-million particles direct $N$-body simulations of globular clusters. We analyse the orbital parameters of the binary samples in two of the DRAGON simulations, D1-R7- IMF93 and D2-R7-IMF01, focusing on their secular evolution and correlations up to 12 Gyr. These two models have different initial stellar mass functions: Kroupa 1993 (D1-R7-IMF93) and Kroupa 2001 (D2-R7-IMF01); and different initial mass ratio distributions: random paring (D1-R7-IMF93) and a power-law (D1-R7-IMF93). In general, the mass ratio of a population of binaries increases over time due to stellar evolution, which is less significant in D2-R7-IMF01. In D1-R7-IMF93, primordial binaries with mass ratio $q approx$ 0.2 are most common, and the frequency linearly declines with increasing $q$ at all times. Dynamical binaries of both models have higher eccentricities and larger semi-major axes than primordial binaries. They are preferentially located in the inner part of the star cluster. Secular evolution of binary orbital parameters does not depend on the initial mass-ratio distribution, but is sensitive to the initial binary distribution of the system. At t = 12 Gyr, the binary fraction decreases radially outwards, and mass segregation is present. A color difference of 0.1 mag in $F330W-F814W$ and 0.2 mag in $NUV-y$ between the core and the outskirts of both clusters is seen, which is a reflection of the binary radial distribution and the mass segregation in the cluster. The complete set of data for primordial and dynamical binary systems at all snapshot intervals is made publicly available.