Do you want to publish a course? Click here

MoSculp: Interactive Visualization of Shape and Time

145   0   0.0 ( 0 )
 Added by Xiuming Zhang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We present a system that allows users to visualize complex human motion via 3D motion sculptures---a representation that conveys the 3D structure swept by a human body as it moves through space. Given an input video, our system computes the motion sculptures and provides a user interface for rendering it in different styles, including the options to insert the sculpture back into the original video, render it in a synthetic scene or physically print it. To provide this end-to-end workflow, we introduce an algorithm that estimates that humans 3D geometry over time from a set of 2D images and develop a 3D-aware image-based rendering approach that embeds the sculpture back into the scene. By automating the process, our system takes motion sculpture creation out of the realm of professional artists, and makes it applicable to a wide range of existing video material. By providing viewers with 3D information, motion sculptures reveal space-time motion information that is difficult to perceive with the naked eye, and allow viewers to interpret how different parts of the object interact over time. We validate the effectiveness of this approach with user studies, finding that our motion sculpture visualizations are significantly more informative about motion than existing stroboscopic and space-time visualization methods.



rate research

Read More

Dynamic networks can be challenging to analyze visually, especially if they span a large time range during which new nodes and edges can appear and disappear. Although it is straightforward to provide interfaces for visualization that represent multiple states of the network (i.e., multiple timeslices) either simultaneously (e.g., through small multiples) or interactively (e.g., through interactive animation), these interfaces might not support tasks in which disjoint timeslices need to be compared. Since these tasks are key for understanding the dynamic aspects of the network, understanding which interactive visualizations best support these tasks is important. We present the results of a series of laboratory experiments comparing two traditional approaches (small multiples and interactive animation), with a more recent approach based on interactive timeslicing. The tasks were performed on a large display through a touch interface. Participants completed 24 trials of three tasks with all techniques. The results show that interactive timeslicing brings benefit when comparing distant points in time, but less benefits when analyzing contiguous intervals of time.
Debugging is famously one the hardest parts in programming. In this paper, we tackle the question: what does a debugging environment look like when we take interactive visualization as a central design principle? We introduce Anteater, an interactive visualization system for tracing and exploring the execution of Python programs. Existing systems often have visualization components built on top of an existing infrastructure. In contrast, Anteaters organization of trace data enables an intermediate representation which can be leveraged to automatically synthesize a variety of visualizations and interactions. These interactive visualizations help with tasks such as discovering important structures in the execution and understanding and debugging unexpected behaviors. To assess the utility of Anteater, we conducted a participant study where programmers completed tasks on their own python programs using Anteater. Finally, we discuss limitations and where further research is needed.
Graph data have become increasingly common. Visualizing them helps people better understand relations among entities. Unfortunately, existing graph visualization tools are primarily designed for single-person desktop use, offering limited support for interactive web-based exploration and online collaborative analysis. To address these issues, we have developed Argo Lite, a new in-browser interactive graph exploration and visualization tool. Argo Lite enables users to publish and share interactive graph visualizations as URLs and embedded web widgets. Users can explore graphs incrementally by adding more related nodes, such as highly cited papers cited by or citing a paper of interest in a citation network. Argo Lite works across devices and platforms, leveraging WebGL for high-performance rendering. Argo Lite has been used by over 1,000 students at Georgia Techs Data and Visual Analytics class. Argo Lite may serve as a valuable open-source tool for advancing multiple CIKM research areas, from data presentation, to interfaces for information systems and more.
75 - Qi Duan , Guotai Wang , Rui Wang 2020
Clinical research on smart healthcare has an increasing demand for intelligent and clinic-oriented medical image computing algorithms and platforms that support various applications. To this end, we have developed SenseCare research platform for smart healthcare, which is designed to boost translational research on intelligent diagnosis and treatment planning in various clinical scenarios. To facilitate clinical research with Artificial Intelligence (AI), SenseCare provides a range of AI toolkits for different tasks, including image segmentation, registration, lesion and landmark detection from various image modalities ranging from radiology to pathology. In addition, SenseCare is clinic-oriented and supports a wide range of clinical applications such as diagnosis and surgical planning for lung cancer, pelvic tumor, coronary artery disease, etc. SenseCare provides several appealing functions and features such as advanced 3D visualization, concurrent and efficient web-based access, fast data synchronization and high data security, multi-center deployment, support for collaborative research, etc. In this paper, we will present an overview of SenseCare as an efficient platform providing comprehensive toolkits and high extensibility for intelligent image analysis and clinical research in different application scenarios.
88 - Dingzeyu Li 2017
Incorporating accurate physics-based simulation into interactive design tools is challenging. However, adding the physics accurately becomes crucial to several emerging technologies. For example, in virtual/augmented reality (VR/AR) videos, the faithful reproduction of surrounding audios is required to bring the immersion to the next level. Similarly, as personal fabrication is made possible with accessible 3D printers, more intuitive tools that respect the physical constraints can help artists to prototype designs. One main hurdle is the sheer amount of computation complexity to accurately reproduce the real-world phenomena through physics-based simulation. In my thesis research, I develop interactive tools that implement efficient physics-based simulation algorithms for automatic optimization and intuitive user interaction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا